Regression-adjusted matching and double-robust methods for estimating average treatment effects in health economic evaluation

Noémi Kreif1, Richard Grieve2, Rosalba Radice2, Jasjeet S. Sekhon3
1London School of Hygiene and Tropical Medicine,
2Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
3Department of Political Science, and Statistics, University of California Berkeley, Berkeley, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abadie, A., Drukker, D., Herr, J.L., Imbens, G.: Implementing matching estimators for average treatment effects in Stata. Stata J. 4(3), 290–311 (2004a)

Abadie, A., Herr, J.L., Imbens, G.W., Drukker, D.M.: NNMATCH: Stata module to compute nearest-neighbor bias-corrected estimators. http://fmwww.bc.edu/repec/bocode/n/nnmatch.hlp (2004b). Accessed 15 June 2012

Abadie, A., Imbens, G.W.: Large sample properties of matching estimators for average treatment effects. Econometrica 74(1), 235–267 (2006)

Abadie, A., Imbens, G.W.: Bias-corrected matching estimators for average treatment effects. J. Bus. Econ. Stat. 29(1), 1–11 (2011)

Austin, P.C.: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat. Med. 27(12), 2037–2049 (2008)

Austin, P.C.: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 28, 3083–3107 (2009)

Austin, P.C.: Using ensemble-based methods for directly estimating causal effects: an investigation of tree-based G-computation. Multivariate Behav. Res. 47(1), 115–135 (2012)

Bang, H., Robins, J.M.: Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962–972 (2005)

Barber, J., Thompson, S.G.: Multiple regression of cost data: use of generalised linear models. J. Health Serv. Res. Policy 9(4), 197–204 (2004)

Basu, A.: Economics of individualization in comparative effectiveness research and a basis for a patient-centered health care. J. Health Econ. 30(3), 549–559 (2011)

Basu, A., Manca, A.: Regression estimators for generic health-related quality of life and quality-adjusted life years. Med. Decis. Making 32(1), 56–69 (2011)

Basu, A., Manning, W.G.: Issues for the next generation of health care cost analyses. Med. Care 47(7_Supplement_1), S109–S114 (2009)

Basu, A., Polsky, D., Manning, W.: Estimating treatment effects on healthcare costs under exogeneity: is there a ‘magic bullet’? Health Serv. Outcomes Res. Methodol. 11(1), 1–26 (2011). doi: 10.1007/s10742-011-0072-8

Basu, A., Rathouz, P.J.: Estimating marginal and incremental effects on health outcomes using flexible link and variance function models. Biostatistics 6(1), 93–109 (2005)

Buntin, M.B., Zaslavsky, A.M.: Too much ado about two-part models and transformation? Comparing methods of modeling Medicare expenditures. J. Health Econ. 23(3), 525–542 (2004)

Busso, M., DiNardo, J., McCrary, J.: New evidence on the finite sample properties of propensity score reweighting and matching estimators. In: Working paper, vol. 3998, 2011

Caliendo, M., Kopeinig, S.: Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 22(1), 31–72 (2008). doi: 10.1111/j.1467-6419.2007.00527.x

Crump, R.K., Hotz, V.J., Imbens, G.W., Mitnik, O.A.: Dealing with limited overlap in estimation of average treatment effects. Biometrika 96(1), 187–199 (2009)

Davison, A., Hinkley, D.: Bootstrap Methods and Their Application. Cambridge University Press, New York (1997)

Dehejia, R.H., Wahba, S.: Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 84(1), 151–161 (2002)

Diamond, A., Sekhon, J.S.: Genetic matching for estimating causal effects: a general multivariate matching method for achieving balance in observational studies. Rev. Econ. Stat. 95(3), 932–945 (2013)

Fenwick, E., O’Brien, B., Briggs, A.: Cost-effectiveness acceptability curves—facts, fallacies and frequently asked questions. Health Econ. 13(5), 405–415 (2004)

Freedman, D., Berk, R.A.: Weighting regression by propensity score. Eval. Rev. 32(4), 392–409 (2008)

Fung, V., Brand, R.J., Newhouse, J.P., Hsu, J.: Using medicare data for comparative effectiveness research: opportunities and challenges. Am. J. Manag. Care 17(7), 489–496 (2011)

Funk, M.J., Westreich, D., Wiesen, C., Stürmer, T., Brookhart, M.A., Davidian, M.: Doubly robust estimation of causal effects. Am. J. Epidemiol. 173(7), 761–767 (2011). doi: 10.1093/aje/kwq439

Glick, H., Doshi, J., Sonnad, S., Polsky, D.: Economic Evaluation in Clinical Trials. Oxford University Press, Oxford (2007)

Glynn, A.N., Quinn, K.M.: An introduction to the augmented inverse propensity weighted estimator. Political Anal. 18, 36–56 (2010)

Golinelli, D., Ridgeway, G., Rhoades, H., Tucker, J., Wenzel, S.: Bias and variance trade-offs when combining propensity score weighting and regression: with an application to HIV status and homeless men. Health Serv. Outcomes Res. Methodol. 12(2–3), 104–118 (2012)

Grieve, R., Sekhon, J.S., Hu, T.-W., Bloom, J.: Evaluating health care programs by combining cost with quality of life measures: a case study comparing capitation and fee for service. Health Serv. Res. 43(4), 1204–1222 (2008)

Gruber, S., van der Laan, M.J.: An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. Int. J. Biostat. 6(1), Article 18 (2010). doi: 10.2202/1557-4679.1182

Hill, J., Reiter, J.P.: Interval estimation for treatment effects using propensity score matching. Stat. Med. 25(13), 2230–2256 (2006)

Hirano, K., Imbens, G.W.: Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization. Health Serv. Outcomes Res. Methodol. 2(3), 259–278 (2001)

Hirano, K., Imbens, G.W., Ridder, G.: Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71(4), 1161–1189 (2003)

Ho, D.E., Imai, K., King, G., Stuart, E.A.: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15(3), 199–236 (2007)

Imbens, G.M., Wooldridge, J.M.: Recent developments in the econometrics of program evaluation. J. Econ. Lit. 47(1), 5–86 (2009)

Jackson, C., Bojke, L., Thompson, S., Claxton, K., Sharples, L.: A framework for addressing structural uncertainty in decision models. Med. Decis. Making 31, 662–674 (2011)

Jones, A., Lomas, J., Rice, N.: Applying beta-type size distributions to healthcare cost regressions. In: HEDG working papers, vol. WP 11/31. HEDG, c/o Department of Economics, University of York, 2011

Jones, A.M.: Models for health care. In: HEDG working papers. HEDG, c/o Department of Economics, University of York, 2010

Kang, J.D.Y., Schafer, J.L.: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat. Sci. 22(4), 523–539 (2007)

Kreif, N., Grieve, R., Radice, R., Sadique, Z., Ramsahai, R., Sekhon, J.S.: Methods for estimating subgroup effects in cost-effectiveness analyses that use observational data. Med. Decis. Making 32(6), 750–763 (2012a). doi: 10.1177/0272989x12448929

Kreif, N., Grieve, R., Sadique, Z.: Statistical methods for cost-effectiveness analyses that use observational data: a critical appraisal tool and review of current practice. Health Econ. 22(4), 486–500 (2012b). doi: 10.1002/hec.2806

Lee, B.K., Lessler, J., Stuart, E.A.: Improving propensity score weighting using machine learning. Stat. Med. 29(3), 337–346 (2010)

Lunceford, J.K., Davidian, M.: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat. Med. 23(19), 2937–2960 (2004)

Manca, A., Austin, P.C.: Using propensity score methods to analyse individual patient-level cost-effectiveness data from observational studies. http://www.york.ac.uk/res/herc/documents/wp/08_20.pdf (2008). Accessed 15 June 2012

Manning, W.G., Basu, A., Mullahy, J.: Generalized modeling approaches to risk adjustment of skewed outcomes data. J. Health Econ. 24(3), 465–488 (2005). doi: 10.1016/j.jhealeco.2004.09.011

Mihaylova, B., Briggs, A., O’Hagan, A., Thompson, S.: Review of statistical methods for analysing healthcare resources and costs. Health Econ. (2010). doi: 10.1002/hec.1653

NICE: Guide to the methods of technology appraisal 2013. http://www.nice.org.uk/media/D45/1E/GuideToMethodsTechnologyAppraisal2013.pdf (2013). Accessed 10 July 2013

Nixon, R., Wonderling, D., Grieve, R.: Non-parametric methods for cost-effectiveness analysis: the central limit theorem and the bootstrap compared. Health Econ. 19(3), 316–333 (2010)

Nixon, R.M., Thompson, S.G.: Methods for incorporating covariate adjustment, subgroup analysis and between-centre differences into cost-effectiveness evaluations. Health Econ. 14(12), 1217–1229 (2005)

Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688 (1995)

Petersen, M.L., Porter, K., Gruber, S., Wang, Y., Laan, M.J.V.D.: Diagnosing and responding to violations in the positivity assumption. Stat. Methods Med. Res. 21(1), 31–54 (2012)

Porter, K.E., Gruber, S., Laan, M.J.V.D., Sekhon, J.S.: The relative performance of targeted maximum likelihood estimators. Int. J. Biostat. (2011). doi: 10.2202/1557-4679

Quinn, C.: The health-economic applications of copulas: methods in applied econometric research. http://ideas.repec.org/p/yor/hectdg/07-22.html (2007). Accessed 10 Aug 2011

R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2011)

Radice, R., Grieve, R., Ramsahai, R., Kreif, N., Sadique, Z., Sekhon, J.S.: Evaluating treatment effectiveness in patient subgroups: a comparison of propensity score methods with an automated matching approach. Int. J. Biostat. 8(1), 25 (2012)

Robins, J., Rotnitzky, A., Zhao, L.P.: Estimation of regression coefficients when some regressors are not always observed. J. Am. Stat. Assoc. 89, 846–866 (1994)

Robins, J., Sued, M., Lei-Gomez, Q., Rotnitzky, A.: Comment: performance of double-robust estimators when “inverse probability” weights are highly variable. Stat. Sci. 22(4), 544–559 (2007)

Robins, J.M., Rotnitzky, A., Zhao, L.P.: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Stat. Assoc. 90(429), 106–121 (1995)

Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983). doi: 10.1093/biomet/70.1.41

Rowan, K., Welch, C., North, E., Harrison, D.: Drotrecogin alfa (activated): real-life use and outcomes for the UK. Crit. Care 12(2), R58 (2008)

Rubin, D.B.: The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29, 185–203 (1973)

Rubin, D.B.: The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat. Med. 26(1), 20–36 (2007)

Rubin, D.B.: On the limitations of comparative effectiveness research. Stat. Med. 29, 1991–1995 (2010)

Rubin, D.B., Thomas, N.: Combining propensity score matching with additional adjustments for prognostic covariates. J. Am. Stat. Assoc. 95, 573–585 (2000)

Sadique, M.Z., Grieve, R., Harrison, D., Cuthbertson, B., Rowan, K.: Is Drotrecogin alfa (activated) for adults with severe sepsis, cost-effective in routine clinical practice? Crit. Care 15(5), R228 (2011)

Sekhon, J.S.: Matching: multivariate and propensity score matching with automated balance search. J. Stat. Softw. 42(7), 1–52 (2011)

Sekhon, J.S., Grieve, R.D.: A matching method for improving covariate balance in cost-effectiveness analyses. Health Econ. 21(6), 695–714 (2011). doi: 10.1002/hec.1748

StataCorp: Stata Statistical Software: Release 12. StataCorp LP, College Station (2011)

Stuart, E.A.: Matching methods for causal inference: a review and a look forward. Stat. Sci. 25(1), 1–21 (2010)

Trivedi, P.K., Zimmer, D.M.: Copula Modeling: An Introduction to Practitioners, vol. 1. Foundations and Trends in Econometrics. Now Publishing Inc., Delft (2005)

Tunis, S.R., Benner, J., McClellan, M.: Comparative effectiveness research: policy context, methods development and research infrastructure. Stat. Med. 29(19), 1963–1976 (2010). doi: 10.1002/sim.3818

van der Laan, M.J.: Targeted maximum likelihood based causal inference: part I. Int. J. Biostat. (2010). doi: 10.2202/1557-4679.1211

van der Laan, M.J., Gruber, S.: Collaborative double robust targeted maximum likelihood estimation. Int. J. Biostat. (2010). doi: 10.2202/1557-4679.1181

van der Laan, M.J., Polley, E.C., Hubbard, A.E.: Super learner. Stat. Appl. Genet. Mol. Biol. (2007). doi: 10.2202/1544-6115.1309

Westreich, D., Cole, S.R.: Invited commentary: positivity in practice. Am. J. Epidemiol. 171(6), 674–677 (2010). doi: 10.1093/aje/kwp436

Westreich, D., Lessler, J., Funk, M.: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J. Clin. Epidemiol. 63(8), 826–833 (2010)

Willan, A.R., Briggs, A.H., Hoch, J.S.: Regression methods for covariate adjustment and subgroup analysis for non-censored cost-effectiveness data. Health Econ. 13(5), 461–475 (2004)