Regression-adjusted matching and double-robust methods for estimating average treatment effects in health economic evaluation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abadie, A., Drukker, D., Herr, J.L., Imbens, G.: Implementing matching estimators for average treatment effects in Stata. Stata J. 4(3), 290–311 (2004a)
Abadie, A., Herr, J.L., Imbens, G.W., Drukker, D.M.: NNMATCH: Stata module to compute nearest-neighbor bias-corrected estimators. http://fmwww.bc.edu/repec/bocode/n/nnmatch.hlp (2004b). Accessed 15 June 2012
Abadie, A., Imbens, G.W.: Large sample properties of matching estimators for average treatment effects. Econometrica 74(1), 235–267 (2006)
Abadie, A., Imbens, G.W.: Bias-corrected matching estimators for average treatment effects. J. Bus. Econ. Stat. 29(1), 1–11 (2011)
Austin, P.C.: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat. Med. 27(12), 2037–2049 (2008)
Austin, P.C.: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 28, 3083–3107 (2009)
Austin, P.C.: Using ensemble-based methods for directly estimating causal effects: an investigation of tree-based G-computation. Multivariate Behav. Res. 47(1), 115–135 (2012)
Bang, H., Robins, J.M.: Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962–972 (2005)
Barber, J., Thompson, S.G.: Multiple regression of cost data: use of generalised linear models. J. Health Serv. Res. Policy 9(4), 197–204 (2004)
Basu, A.: Economics of individualization in comparative effectiveness research and a basis for a patient-centered health care. J. Health Econ. 30(3), 549–559 (2011)
Basu, A., Manca, A.: Regression estimators for generic health-related quality of life and quality-adjusted life years. Med. Decis. Making 32(1), 56–69 (2011)
Basu, A., Manning, W.G.: Issues for the next generation of health care cost analyses. Med. Care 47(7_Supplement_1), S109–S114 (2009)
Basu, A., Polsky, D., Manning, W.: Estimating treatment effects on healthcare costs under exogeneity: is there a ‘magic bullet’? Health Serv. Outcomes Res. Methodol. 11(1), 1–26 (2011). doi: 10.1007/s10742-011-0072-8
Basu, A., Rathouz, P.J.: Estimating marginal and incremental effects on health outcomes using flexible link and variance function models. Biostatistics 6(1), 93–109 (2005)
Buntin, M.B., Zaslavsky, A.M.: Too much ado about two-part models and transformation? Comparing methods of modeling Medicare expenditures. J. Health Econ. 23(3), 525–542 (2004)
Busso, M., DiNardo, J., McCrary, J.: New evidence on the finite sample properties of propensity score reweighting and matching estimators. In: Working paper, vol. 3998, 2011
Caliendo, M., Kopeinig, S.: Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 22(1), 31–72 (2008). doi: 10.1111/j.1467-6419.2007.00527.x
Crump, R.K., Hotz, V.J., Imbens, G.W., Mitnik, O.A.: Dealing with limited overlap in estimation of average treatment effects. Biometrika 96(1), 187–199 (2009)
Davison, A., Hinkley, D.: Bootstrap Methods and Their Application. Cambridge University Press, New York (1997)
Dehejia, R.H., Wahba, S.: Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 84(1), 151–161 (2002)
Diamond, A., Sekhon, J.S.: Genetic matching for estimating causal effects: a general multivariate matching method for achieving balance in observational studies. Rev. Econ. Stat. 95(3), 932–945 (2013)
Fenwick, E., O’Brien, B., Briggs, A.: Cost-effectiveness acceptability curves—facts, fallacies and frequently asked questions. Health Econ. 13(5), 405–415 (2004)
Freedman, D., Berk, R.A.: Weighting regression by propensity score. Eval. Rev. 32(4), 392–409 (2008)
Fung, V., Brand, R.J., Newhouse, J.P., Hsu, J.: Using medicare data for comparative effectiveness research: opportunities and challenges. Am. J. Manag. Care 17(7), 489–496 (2011)
Funk, M.J., Westreich, D., Wiesen, C., Stürmer, T., Brookhart, M.A., Davidian, M.: Doubly robust estimation of causal effects. Am. J. Epidemiol. 173(7), 761–767 (2011). doi: 10.1093/aje/kwq439
Glick, H., Doshi, J., Sonnad, S., Polsky, D.: Economic Evaluation in Clinical Trials. Oxford University Press, Oxford (2007)
Glynn, A.N., Quinn, K.M.: An introduction to the augmented inverse propensity weighted estimator. Political Anal. 18, 36–56 (2010)
Golinelli, D., Ridgeway, G., Rhoades, H., Tucker, J., Wenzel, S.: Bias and variance trade-offs when combining propensity score weighting and regression: with an application to HIV status and homeless men. Health Serv. Outcomes Res. Methodol. 12(2–3), 104–118 (2012)
Grieve, R., Sekhon, J.S., Hu, T.-W., Bloom, J.: Evaluating health care programs by combining cost with quality of life measures: a case study comparing capitation and fee for service. Health Serv. Res. 43(4), 1204–1222 (2008)
Gruber, S., van der Laan, M.J.: An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. Int. J. Biostat. 6(1), Article 18 (2010). doi: 10.2202/1557-4679.1182
Hill, J., Reiter, J.P.: Interval estimation for treatment effects using propensity score matching. Stat. Med. 25(13), 2230–2256 (2006)
Hirano, K., Imbens, G.W.: Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization. Health Serv. Outcomes Res. Methodol. 2(3), 259–278 (2001)
Hirano, K., Imbens, G.W., Ridder, G.: Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71(4), 1161–1189 (2003)
Ho, D.E., Imai, K., King, G., Stuart, E.A.: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Anal. 15(3), 199–236 (2007)
Imbens, G.M., Wooldridge, J.M.: Recent developments in the econometrics of program evaluation. J. Econ. Lit. 47(1), 5–86 (2009)
Jackson, C., Bojke, L., Thompson, S., Claxton, K., Sharples, L.: A framework for addressing structural uncertainty in decision models. Med. Decis. Making 31, 662–674 (2011)
Jones, A., Lomas, J., Rice, N.: Applying beta-type size distributions to healthcare cost regressions. In: HEDG working papers, vol. WP 11/31. HEDG, c/o Department of Economics, University of York, 2011
Jones, A.M.: Models for health care. In: HEDG working papers. HEDG, c/o Department of Economics, University of York, 2010
Kang, J.D.Y., Schafer, J.L.: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat. Sci. 22(4), 523–539 (2007)
Kreif, N., Grieve, R., Radice, R., Sadique, Z., Ramsahai, R., Sekhon, J.S.: Methods for estimating subgroup effects in cost-effectiveness analyses that use observational data. Med. Decis. Making 32(6), 750–763 (2012a). doi: 10.1177/0272989x12448929
Kreif, N., Grieve, R., Sadique, Z.: Statistical methods for cost-effectiveness analyses that use observational data: a critical appraisal tool and review of current practice. Health Econ. 22(4), 486–500 (2012b). doi: 10.1002/hec.2806
Lee, B.K., Lessler, J., Stuart, E.A.: Improving propensity score weighting using machine learning. Stat. Med. 29(3), 337–346 (2010)
Lunceford, J.K., Davidian, M.: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat. Med. 23(19), 2937–2960 (2004)
Manca, A., Austin, P.C.: Using propensity score methods to analyse individual patient-level cost-effectiveness data from observational studies. http://www.york.ac.uk/res/herc/documents/wp/08_20.pdf (2008). Accessed 15 June 2012
Manning, W.G., Basu, A., Mullahy, J.: Generalized modeling approaches to risk adjustment of skewed outcomes data. J. Health Econ. 24(3), 465–488 (2005). doi: 10.1016/j.jhealeco.2004.09.011
Mihaylova, B., Briggs, A., O’Hagan, A., Thompson, S.: Review of statistical methods for analysing healthcare resources and costs. Health Econ. (2010). doi: 10.1002/hec.1653
NICE: Guide to the methods of technology appraisal 2013. http://www.nice.org.uk/media/D45/1E/GuideToMethodsTechnologyAppraisal2013.pdf (2013). Accessed 10 July 2013
Nixon, R., Wonderling, D., Grieve, R.: Non-parametric methods for cost-effectiveness analysis: the central limit theorem and the bootstrap compared. Health Econ. 19(3), 316–333 (2010)
Nixon, R.M., Thompson, S.G.: Methods for incorporating covariate adjustment, subgroup analysis and between-centre differences into cost-effectiveness evaluations. Health Econ. 14(12), 1217–1229 (2005)
Petersen, M.L., Porter, K., Gruber, S., Wang, Y., Laan, M.J.V.D.: Diagnosing and responding to violations in the positivity assumption. Stat. Methods Med. Res. 21(1), 31–54 (2012)
Porter, K.E., Gruber, S., Laan, M.J.V.D., Sekhon, J.S.: The relative performance of targeted maximum likelihood estimators. Int. J. Biostat. (2011). doi: 10.2202/1557-4679
Quinn, C.: The health-economic applications of copulas: methods in applied econometric research. http://ideas.repec.org/p/yor/hectdg/07-22.html (2007). Accessed 10 Aug 2011
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2011)
Radice, R., Grieve, R., Ramsahai, R., Kreif, N., Sadique, Z., Sekhon, J.S.: Evaluating treatment effectiveness in patient subgroups: a comparison of propensity score methods with an automated matching approach. Int. J. Biostat. 8(1), 25 (2012)
Robins, J., Rotnitzky, A., Zhao, L.P.: Estimation of regression coefficients when some regressors are not always observed. J. Am. Stat. Assoc. 89, 846–866 (1994)
Robins, J., Sued, M., Lei-Gomez, Q., Rotnitzky, A.: Comment: performance of double-robust estimators when “inverse probability” weights are highly variable. Stat. Sci. 22(4), 544–559 (2007)
Robins, J.M., Rotnitzky, A., Zhao, L.P.: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Stat. Assoc. 90(429), 106–121 (1995)
Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983). doi: 10.1093/biomet/70.1.41
Rowan, K., Welch, C., North, E., Harrison, D.: Drotrecogin alfa (activated): real-life use and outcomes for the UK. Crit. Care 12(2), R58 (2008)
Rubin, D.B.: The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29, 185–203 (1973)
Rubin, D.B.: The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat. Med. 26(1), 20–36 (2007)
Rubin, D.B.: On the limitations of comparative effectiveness research. Stat. Med. 29, 1991–1995 (2010)
Rubin, D.B., Thomas, N.: Combining propensity score matching with additional adjustments for prognostic covariates. J. Am. Stat. Assoc. 95, 573–585 (2000)
Sadique, M.Z., Grieve, R., Harrison, D., Cuthbertson, B., Rowan, K.: Is Drotrecogin alfa (activated) for adults with severe sepsis, cost-effective in routine clinical practice? Crit. Care 15(5), R228 (2011)
Sekhon, J.S.: Matching: multivariate and propensity score matching with automated balance search. J. Stat. Softw. 42(7), 1–52 (2011)
Sekhon, J.S., Grieve, R.D.: A matching method for improving covariate balance in cost-effectiveness analyses. Health Econ. 21(6), 695–714 (2011). doi: 10.1002/hec.1748
StataCorp: Stata Statistical Software: Release 12. StataCorp LP, College Station (2011)
Stuart, E.A.: Matching methods for causal inference: a review and a look forward. Stat. Sci. 25(1), 1–21 (2010)
Trivedi, P.K., Zimmer, D.M.: Copula Modeling: An Introduction to Practitioners, vol. 1. Foundations and Trends in Econometrics. Now Publishing Inc., Delft (2005)
Tunis, S.R., Benner, J., McClellan, M.: Comparative effectiveness research: policy context, methods development and research infrastructure. Stat. Med. 29(19), 1963–1976 (2010). doi: 10.1002/sim.3818
van der Laan, M.J.: Targeted maximum likelihood based causal inference: part I. Int. J. Biostat. (2010). doi: 10.2202/1557-4679.1211
van der Laan, M.J., Gruber, S.: Collaborative double robust targeted maximum likelihood estimation. Int. J. Biostat. (2010). doi: 10.2202/1557-4679.1181
van der Laan, M.J., Polley, E.C., Hubbard, A.E.: Super learner. Stat. Appl. Genet. Mol. Biol. (2007). doi: 10.2202/1544-6115.1309
Westreich, D., Cole, S.R.: Invited commentary: positivity in practice. Am. J. Epidemiol. 171(6), 674–677 (2010). doi: 10.1093/aje/kwp436
Westreich, D., Lessler, J., Funk, M.: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J. Clin. Epidemiol. 63(8), 826–833 (2010)