Regolith-based additive manufacturing for sustainable development of lunar infrastructure – An overview
Tóm tắt
Từ khóa
Tài liệu tham khảo
2020
Berger, 2019
Sanders, 2018
Mueller, 2016, Automated additive construction (AAC) for earth and space using in-situ resources
Karachevtseva, 2017, Cartography of the Luna-21 landing site and Lunokhod-2 traverse area based on Lunar Reconnaissance Orbiter Camera images and surface archive TV-panoramas, Icarus, 283, 104, 10.1016/j.icarus.2016.05.021
1970, Natl. Sp. Sci. Data Cent., 1970
1972, Luna, 20, 1972
Luna 24
Heiken, 1991
Cmglee, 2011
Lee Myers, 2019
Slakey, 2008, Robots vs. Humans: who should explore space?, Sci. Am. Sp., 18, 26, 10.1038/scientificamerican0208-26sp
Tribune Agency, 2020, Could China become the rst nation to have its own moon base ?, Dly. Repub.
Clark, 2020
Zhou, 2019, In-situ construction method for lunar habitation: Chinese Super Mason, Autom. ConStruct., 104, 66, 10.1016/j.autcon.2019.03.024
Patrinos, 2020, 3
2013, 1
Foster+Partners
Pieters, 2000, Space weathering on airless bodies: resolving a mystery with lunar samples, Meteoritics Planet Sci., 35, 1101, 10.1111/j.1945-5100.2000.tb01496.x
Marshall, 2010
Sun, 2017, Developing a new controllable lunar dust simulant: BHLD20, Planet, Space Sci., 141, 17, 10.1016/j.pss.2017.04.010
Ray, 2010, JSC-1A lunar soil simulant: characterization, glass formation, and selected glass properties, J. Non-Cryst. Solids, 356, 2369, 10.1016/j.jnoncrysol.2010.04.049
Greenberg, 2007, 20p
Alshibli, 2009, Strength properties of JSC-1A lunar regolith simulant, J. Geotech. Geoenviron. Eng., 135, 673, 10.1061/(ASCE)GT.1943-5606.0000068
Rickman, 2012, Particle shape in simulants of the lunar regolith, J. Sediment. Res., 82, 823, 10.2110/jsr.2012.69
Benaroya, 2017, Lunar habitats: a brief overview of issues and concepts, Reach. Out., 7–8, 14, 10.1016/j.reach.2018.08.002
Park, 2008, 266
Cain, 2010, Lunar dust: the hazard and astronaut exposure risks, Earth Moon Planets, 107, 107, 10.1007/s11038-010-9365-0
Lab, 2019
Gualtieri, 2015, Compressive deformation of porous lunar regolith, Mater. Lett., 143, 276, 10.1016/j.matlet.2014.11.153
Heymann, 1978
Etangs, 2001, Origin of the Moon in a giant impact near the end of the Earth's formation, Nature, 412, 708, 10.1038/35089010
Hiesinger, 2003, Ages and stratigraphy of mare basalts in oceanus procellarum, mare nubium, mare cognitum, and mare insularum, J. Geophys. Res. E Planets., 108, 10.1029/2002JE001985
Housley, 1974, Solar wind and micrometeorite alteration of the lunar regolith, Lunar Planet. Sci. Conf., 5, 2623
Labotka, 1980, The lunar regolith: comparative petrology of the Apollo sites, Geochim. Cosmochim. Acta, Suppl., 1285
Papike, 1982, The lunar regolith: chemistry, mineralogy, and petrology, 761
Albee, 1970, Microprobe investigations of Apollo 11 samples, 135
Jolliff, 1995, Cogenetic rockfragments from a lunar soil : evidence on the Moon of a ferroannoritic-anorthosite pluton on the Moon, Geochem. Cosmochim. Acta, 59, 2345, 10.1016/0016-7037(95)00110-L
Jerde, 1994, 58
Chao, 1970, Lunar glasses of impact origin. Physical and chemical characteristics and geologic implications, J. Geophys. Res., 75, 7445, 10.1029/JB075i035p07445
Lab, 2019
Haskin, 1973, Major and trace element abundances in samples from the lunar highlands, Lunar Planet. Sci. Conf. Proc., 1275
L, 1972, Luna 20 and Apollo 16 core fines: large-ion lithophile trace-element abundances, Earth Planet Sci. Lett., 17, 13, 10.1016/0012-821X(72)90253-1
Britt, 2020, High fidelity lunar highlands and mare regolith simulants: enabling tools for lunar surface exploration and ISRU development, in, Lunar Surf. Sci. Work., 2020
Stoeser, 2010, 24p
A P, 1971, Preliminary data on the lunar soil brought to earth by automatic probe “Luna 16, J. Br. Interplanet. Soc. (JBIS), 24, 475
Rhodes, 1981, Apollo 11 breccias and soils: aluminous mare basalts or multi-component mixtures?, Proc. Lunar Planet. Sci., 12B, 607
Tang, 2012, Simulation of nanophase iron production in lunar space weathering, Planet. Space Sci., 60, 322, 10.1016/j.pss.2011.10.006
2020
Glaze, 2019
Buchner, 2018, A new planetary structure fabrication process using phosphoric acid, Acta Astronaut., 143, 272, 10.1016/j.actaastro.2017.11.045
Jakus, 2017, Robust and elastic lunar and martian structures from 3D-printed regolith inks, Nat. Publ. Gr., 1
Goulas, 2016, Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials, Addit. Manuf., 10, 36
Hintze, 2013, 134
Travitzky, 2014, Additive manufacturing of ceramic-based materials, Adv. Eng. Mater., 16, 729, 10.1002/adem.201400097
Khoshnevis, 2005, Lunar contour crafting - a novel technique for ISRU-based habitat development, 43rd, AIAA Aerosp. Sci. Meet. Exhib. - Meet. Pap., 7397
Chen, 2019, 3D printing of ceramics: a review, J. Eur. Ceram. Soc., 39, 661, 10.1016/j.jeurceramsoc.2018.11.013
Chavez, 2020, The influence of printing parameters, post-processing, and testing conditions on the properties of binder jetting additive manufactured functional ceramics, Ceramics, 3, 65, 10.3390/ceramics3010008
Lin, 1989, Concrete lunar base investigation, J. Aero. Eng., 2
Fiske, 2017
Khoshnevis, 2012, Extraterrestrial construction using contour crafting, 23rd, Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF, 250
Werkheser, 2015, Development of additive construction technologies for application to development of lunar/martian surface structures using in-situ materials, CAMX 2015 - Compos. Adv. Mater. Expo, 2395
Grugel, 2008, Sulfur “concrete” for lunar applications - sublimation concerns, Adv. Space Res., 41, 103, 10.1016/j.asr.2007.08.018
Davis, 2017, Preparation of lunar regolith based geopolymer cement under heat and vacuum, Adv. Space Res., 59, 1872, 10.1016/j.asr.2017.01.024
Oh, 2020, Ultralow-binder-content thermoplastic composites based on lunar soil simulant, Adv. Space Res., 66, 2245, 10.1016/j.asr.2020.07.041
Sik Lee, 2015, Ann, manufacture of polymeric concrete on the moon, Acta Astronaut., 114, 60, 10.1016/j.actaastro.2015.04.004
Townsend, 2020
Roedel, 2014, Protein-regolith composites for space construction, Earth Sp. 2014 Eng. Extrem. Environ. - Proc. 14th Bienn. Int. Conf. Eng. Sci. Constr. Oper. Challenging Environ., 291
Allende, 2020, Prediction of micrometeoroid damage to lunar construction materials using numerical modeling of hypervelocity impact events, Int. J. Impact Eng., 138, 103499, 10.1016/j.ijimpeng.2020.103499
Roman, 2020, 1
Prater, 2017, Nasa's centennial challenge: 3D-printed habitat, AIAA Sp. Astronaut. Forum Expo. Sp., 1
Prater, 2018, NASA's centennial challenge for 3D-printed habitat: phase ii outcomes and phase III competition overview, 2018 AIAA Sp, Astronaut. Forum Expo
Lee, 2019, Optimization of material extruding performance to build a 3D printed habitat on the moon and Mars, J. Korean Soc. Civ. Eng., 39, 345
Ceccanti, 2010, 3D printing technology for a moon outpost exploiting lunar soil, 61st Int. Astronaut. Congr., 8812
Cesaretti, 2014, Acta Astronautica Building components for an outpost on the Lunar soil by means of a novel 3D printing technology, Acta Astronaut., 93, 430, 10.1016/j.actaastro.2013.07.034
Taylor, 2018, Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks, Acta Astronaut., 143, 1, 10.1016/j.actaastro.2017.11.005
Kruijff, 2000, Peaks of eternal light on the lunar south Pole: how they were found and what they look like, Explor. Util. Moon. Proc. Fourth Int. Conf. Explor. Util. Moon.
Li, 2018, Direct evidence of surface exposed water ice in the lunar polar regions, Proc. Natl. Acad. Sci. U. S. A, 115, 8907, 10.1073/pnas.1802345115
Lavoie, 2006
Magoffin, 1990, Lunar glass production using concentrated solar energy, AIAA Sp. Programs Technol. Conf., 10.2514/6.1990-3752
Lin, 2002, 10, 104
Nakamura, 2009, Solar thermal power system for oxygen production from lunar regolith
Hintze, 2009, Lunar surface stabilization via sintering or the use of heat cured polymers, 47th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., 10.2514/6.2009-1015
Howe, 2016, ATHLETE as a mobile ISRU and regolith construction platform, Earth Sp. 2016 Eng. Extrem. Environ. - Proc. 15th Bienn. Int. Conf. Eng. Sci. Constr. Oper. Challenging Environ., 560
Scott Howe, 2013, Faxing structures to the moon: Freeform additive construction system (FACS), AIAA Sp. 2013 Conf. Expo, 1
Nakamura, 2011, Solar thermal system for lunar ISRU applications: development and field operation at Mauna Kea, HI, Nonimaging Opt. Effic. Des. Illum. Sol. Conc., VIII, 8124
Imhof, 2017, Advancing solar sintering for building A base on the moon, 69 Th Int. Astronaut. Congr., 25
Meurisse, 2018, Solar 3D printing of lunar regolith, Acta Astronaut., 152, 800, 10.1016/j.actaastro.2018.06.063
Fateri, 2019, Solar sintering for lunar additive manufacturing, J. Aero. Eng., 32
Song, 2019, Vacuum sintered lunar regolith simulant : pore-forming and thermal conductivity, Ceram. Int., 45, 3627, 10.1016/j.ceramint.2018.11.023
Song, 2019, Vacuum sintered lunar regolith simulant: pore-forming and thermal conductivity, Ceram. Int., 45, 3627, 10.1016/j.ceramint.2018.11.023
Goulas, 2017, Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing, Appl. Mater. Today., 6, 54, 10.1016/j.apmt.2016.11.004
Goulas, 2018, Mechanical behaviour of additively manufactured lunar regolith simulant components, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 1
Sitta, 2018, 3D printing of Moon highlands regolith simulant, Proc. Int. Astronaut. Congr. IAC, 1
Fateri, 2015
Fateri, 2015, Process parameters development of selective Laser Melting of lunar regolith for on-site manufacturing applications, Int. J. Appl. Ceram. Technol., 12, 46, 10.1111/ijac.12326
Gerdes, 2018, Selective Laser Melting for processing of regolith in support of a lunar base, J. Laser Appl., 30, 10.2351/1.5018576
Fateri, 2019, Investigation on wetting and melting behavior of lunar regolith simulant for additive manufacturing application, Microgravity Sci. Technol., 31, 161, 10.1007/s12217-019-9674-5
Khoshnevis, 2015, Selective separation sintering (SSS) - an additive manufacturing approach for fabrication of ceramic and metallic parts with applications in planetary construction, AIAA Sp. 2015 Conf. Expo, 10.2514/6.2015-4450
Balla, 2012, vol. 6, 451
Mueller, 2014, Additive construction using basalt regolith fines, Earth Sp. 2014 Eng. Extrem. Environ. - Proc. 14th Bienn. Int. Conf. Eng. Sci. Constr. Oper. Challenging Environ., 394
Etheridge, 2011, 1
Taylor, 2005, Microwave sintering of lunar soil: properties, theory, and practice, J. Aero. Eng., 18, 188, 10.1061/(ASCE)0893-1321(2005)18:3(188)
Taylor, 2010, Mineralogical and chemical characterization of lunar highland soils: insights into the space weathering of soils on airless bodies, J. Geophys. Res. E Planets., 115, 10.1029/2009JE003427
Tang, 2012, Simulation of nanophase iron production in lunar space weathering, Planet. Space Sci., 60, 322, 10.1016/j.pss.2011.10.006
D, 2011, Microwave permittivity and permeability measurements on lunar soils
Allan, 2013, Computational modeling and experimental microwave processing of JSC-1A lunar simulant, J. Aero. Eng., 26, 143, 10.1061/(ASCE)AS.1943-5525.0000245
Merritt, 2020, 1
Lim, 2019, Numerical modelling of the microwave heating behaviour of lunar regolith, Planet. Space Sci., 104723, 10.1016/j.pss.2019.104723
Barmatz, 2013, Microwave heating studies and instrumentation for processing lunar regolith and simulants, 44th lunar planet, Sci. Conf., 51, 1223
Fateri, 2019, Localized microwave thermal posttreatment of sintered samples of lunar simulant, J. Aero. Eng., 32, 1
Zocca, 2020, Investigation of the sintering and melting of JSC-2A lunar regolith simulant, Ceram. Int., 46, 14097, 10.1016/j.ceramint.2020.02.212
Zocca, 2015, 2001
Liu, 2019, Digital light processing of lunar regolith structures with high mechanical properties, Ceram. Int., 45, 5829, 10.1016/j.ceramint.2018.12.049
Dou, 2019, Sintering of lunar regolith structures fabricated via digital light processing, Ceram. Int., 45, 17210, 10.1016/j.ceramint.2019.05.276
2018
Srivastava, 2016, Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon, Space Pol., 37, 92, 10.1016/j.spacepol.2016.07.005
Caprio, 2020, Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion, Addit. Manuf., 32, 101029
Jefferies, 2017, Impacts of launch vehicle fairing size on human exploration architectures, IEEE Aerosp. Conf. Proc.
Harbaugh, 2018
2002, vol. 3, 1
Wilcox, 2007, Athlete: a cargo handling and manipulation robot for the moon, J. Field Robot., 24, 421, 10.1002/rob.20193
2015, About the space station solar arrays, About Sp. Stn. Sol. Arrays
Lim, 2017, Extra-terrestrial construction processes – advancements, opportunities and challenges, Adv. Space Res., 60, 1413, 10.1016/j.asr.2017.06.038
Li, 2020, Design of a hundred-kilowatt level integrated gas-cooled space nuclear reactor for deep space application, Nucl. Eng. Des., 361, 110569, 10.1016/j.nucengdes.2020.110569
Pilehvar, 2019, Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures, J. Clean. Prod., 119177
Gaier, 2007, Lunar dust on heat rejection system surfaces: problems and prospects, AIP Conf. Proc., 27, 10.1063/1.2437437
Hintze, 2013, Building a lunar or martian launch pad with in situ materials: recent laboratory and field studies, J. Aero. Eng., 26, 134, 10.1061/(ASCE)AS.1943-5525.0000205
Leung, 2018, In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nat. Commun., 9, 1, 10.1038/s41467-018-03734-7
Scott, 2018, vols. 1–5