Regional averaged controllability for hyperbolic parameter dependent systems

Control Theory and Technology - Tập 18 - Trang 307-314 - 2020
Mouna Abdelli1, Abdelhak Hafdallah1, Fayçal Merghadi1, Meriem Louafi1
1Laboratory of Mathematics, Informatics and Systems (LAMIS), University of Larbi Tebessi, Tebessa, Algeria

Tóm tắt

The purpose of this paper is to extend the notion of regional controllability for hyperbolic parameter dependent systems. The key idea is the characterization of the averaged regional control with minimal energy. This control steers the state average (with respect to such a parameter) towards the desired state only on a given part of the system evolution domain. In this paper, we give the precis definition and the properties of this new concept. Then, we use an approach based on an extension of the Hilbert uniqueness method devoted to the calculation of the control in two different cases: zone control and pointwise control.

Tài liệu tham khảo

R. Curtain, H. Zwart. An Introduction to Infinite-dimensional Linear Systems Theory. Texts in Applied Mathematics. New York: Springer, 1995. A. El Jai. Actuators and controllability of distributed systems. Stabilization of Flexible Structures. Berlin/Heidelberg: Springer, 1990: 109–125. A. El Jai. Regional controllability of distributed parameter systems. International Journal of Control, 1995, 62(6): 1351–1365. E. Zerrik, R. Larhrissi. Regional boundary controllability of hyperbolic systems. Numerical approach. Journal of Dynamical And Control Systems, 2002 8(3): 293–311. E. Zerrik, A. Kamal, A. Boutoulout. Regional flux target with minimum energy. IEE Proceedings-Control Theory and Applications, 2002, 149(4): 349–356. E. Zerrik, M. Ould Sidi. Regional controllability of linear and semi linear hyperbolic systems. International Journal of Mathematical Analysis, 2010, 4(44): 2167–2198. E. Zuazua. Averaged control. Automatica, 2014, 50(12): 3077–3087. J. Lohéac, E. Zuazua. Averaged controllability of parameter dependent conservative semigroups. Journal of Differential Equations, 2017, 262(3): 1540–1574. Qi. Lu, E. Zuazua. Averaged controllability for random evolution partial differential equations. Journal de Mathématiques Pures et Appliquées, 2016, 105(3): 367–414. A. Hafdallah, A. Ayadi. Optimal control of electromagnetic wave displacement with an unknown velocity of propagation. International Journal of Control, 2018, 92(11): 2693–2700. J. L. Lions, E. Magenes. Problèmes Aux Limites Non Homogènes et Applications. Dunod, Paris, 1968. J. L. Lions. Controlabilité exacte, perturbations et stabilisation de systemes distribués. Tome 1. Research in Applied Mathematics, Masson, 1988. A. El Jai, A. J. Pritchard. Capteurs et actionneurs dans l’analyse des systemes distribués. Research in Applied Mathematics, Masson, Paris, 1986.