Các dicalcogen của Zirconium và Hafnium

Journal of the American Ceramic Society - Tập 90 Số 5 - Trang 1347-1364 - 2007
William G. Fahrenholtz1, Gregory E. Hilmas1, Inna G. Talmy2, James A. Zaykoski2
1Materials Science & Engineering Department, University of Missouri—Rolla, Rolla, Missouri 65409
2Naval Surface Warfare Center-Carderock Division, West Bethesda, Maryland 20817.

Tóm tắt

Bài báo này xem xét hóa tinh thể, tổng hợp, độ dày, vi cấu trúc, tính chất cơ học và hành vi oxy hóa của các gốm dicalcogen zirconium (ZrB2) và hafnium (HfB2). Các dicalcogen chịu lửa thể hiện sự hòa tan rắn một phần hoặc hoàn toàn với các dicalcogen của kim loại chuyển tiếp khác, cho phép điều chỉnh thành phần của các tính chất như hệ số giãn nở nhiệt và độ cứng. Phương pháp giảm cacbon là con đường tổng hợp điển hình, nhưng các quá trình phản ứng, phương pháp dung dịch và polymer trước khi gốm cũng có thể được sử dụng. Thông thường, các dicalcogen được tăng cường độ bằng cách ép nóng, nhưng gần đây, các con đường tinh chế ở trạng thái rắn và pha lỏng đã được phát triển. Các gốm ZrB2 và HfB2 hạt mịn có cường độ vài trăm MPa, có thể tăng lên trên 1 GPa với việc thêm SiC. Các dicalcogen nguyên chất thể hiện động học oxy hóa parabol ở nhiệt độ dưới 1100°C, nhưng độ bay hơi của B2O3 dẫn đến động học oxy hóa nhanh, tuyến tính trên nhiệt độ đó. Việc thêm các tác nhân hình thành lớp silica như SiC hoặc MoSi2 cải thiện hành vi oxy hóa trên 1100°C. Dựa trên sự kết hợp độc đáo của các tính chất, các gốm ZrB2 và HfB2 là ứng cử viên cho việc sử dụng trong các môi trường cực đoan liên quan đến bay siêu thanh, tái nhập khí quyển và động cơ tên lửa.

Từ khóa


Tài liệu tham khảo

McHale A. E., 1994, Data Collected from Phase Diagrams for Ceramists

10.1002/9783527618217.ch22

10.1111/j.1151-2916.1987.tb05699.x

10.6028/jres.105.057

Card number 75‐1050 Powder Diffraction File International Centre for Diffraction Data.

Card number 89‐3651 Powder Diffraction File International Centre for Diffraction Data.

10.1111/j.1551-2916.2004.01170.x

Vajeeston P., 2001, Electronic Structure, Bonding, and Ground State Properties of AlB2‐Type Transition Metal Diborides, Phys. Rev. B, 63, 04115–1, 10.1103/PhysRevB.63.045115

Cutler R. A., 1991, Ceramics and Glasses: Engineered Materials Handbook, 787

Chase M. W., 1998, NIST‐JANAF Thermochemical Tables

Wuchina E., 2004, Designing for Ultrahigh‐Temperature Applications, The Mechanical and Thermal Properties of HfB2, HfCx, and α-Hf(N), 39, 5939

10.1016/S0955-2219(99)00129-6

Kuwabara K., 2003, The Proceedings of UNITECR 2003. The 8th Biennial Worldwide Conference on Refractories, 302

O.Kida “Monolithic Refractory Material and Waste Melting Furnace Using the Same ” Japanese Patent JP2000335969 May 12 2000.

Kaji N., 1992, Development of ZrB2‐Graphite Protective Sleeve for Submerged Nozzle, Taikabutsu Overseas, 14, 39

Stucker B., 1997, Zirconium Diboride/Copper EDM Electrodes From Selective Laser Sintering, Solid Freeform Fabric. Symp. Proc., 1, 257

10.4028/www.scientific.net/KEM.291-292.537

Stucker B., 2000, Proceedings of the Laser Materials Processing Conference 1999, San Diego, CA. 87(2) F/158‐F/161

Sung J., 2002, Remote‐Plasma Chemical Vapor Deposition of Conformal ZrB2 Films at Low Temperature, A Promising Diffusion Barrier for Ultralarge Scale Integrated Electronics, 91, 3904

Murata Y., 1970, Cutting Tool Tips and Ceramics Containing Hafnium Nitride and Zirconium Diboride, U.S. Patent, 3, 487

Opeka M. M., 2004, Oxidation‐Based Materials Selection for 2000°C+ Hypersonic Aerosurfaces, Theoretical Considerations and Historical Experience, 39, 5887

Van Wie D. M., 2004, The Hypersonic Environment, Required Operating Conditions and Design Challenges, 39, 5915

White M. E., 1999, Affordable Hypersonic Missiles for Long‐Range Precision Strike, J. Hopkins APL Tech. Digest, 20, 415

Jackson T. A., 2004, High Speed Propulsion, Performance Advantage of Advanced Materials, 39, 5905

Samsonov G. V., 1960, Boron, Its Compounds and Alloys, Akad. Nauk Ukrain. SSR. Kiev.

Samsonov G. V., 1975, Borides

G. V.SamsonovandK. I.Portnoi. “Alloys Based on High‐Temperature Compounds” (Splavy na Osnove Tugoplavkikh Soedineniy) Oboronnoi Prom. Moscow (1961) (English Translation).

10.1007/978-3-642-66620-9_3

Hoard J. L., 1967, The Chemistry of Boron and Its Compounds, 131

10.1016/0001-6160(54)90090-5

Kuz'ma Y. B., 1985, Crystal Chemistry of Refractory Compounds, Zh. Vses. Khim. Obshch. Mendeleeva, 30, 509

Y. B.Kuz'ma“Crystal Chemistry of Borides”(Kristallokhimia boridov) Vishcha Skola Lvov USSR 1983.

Ivanovskii A. L., 1998, First Principles Studies of the Stability and Electronic Properties of Metal Borides. 1. Diborides of 3d Metals, Metall. Nov. Takhnol., 20, 41

Ivanovskii A. L., 1999, Ab Initio Studies of the Stability and Electronic Properties of Metal Borides. II. Diborides of 4d and 5d Metals, Metall. Nov. Tekhnol., 21, 19

10.1134/1.1514768

10.3891/acta.chem.scand.04-0146

Haigg G., 1952, Distribution Equilibria in some Ternary Systems M1–M2–B and the Relative Strength of the Transition Metal–Boron Bonds, J. Inst. Metals, 81, 57

10.1016/0022-5088(76)90096-5

Grigorovich V., 1992, Sintering From Aspect of Interatomic Bonds, Sci. Sintering, 24, 155

10.1063/1.1731097

Lyakhovskaya I. I., 1970, K‐spectra of Boron in Transition Metal Diborides and in Compounds LaB6, BaB6, and AsB, Fyz. Tverd. Tela (Solid State Phys.), 12, 174

Nemnonov S. A., 1966, X‐Ray Spectra, Electron Structure, and Properties of Titanium Compounds, Fiz. Metall. Metalloved. (Phys. Metals Sci. Metals), 22, 680

10.1063/1.1655835

Nemnonov S. A., 1969, Study of the Electronic Structure and Interatomic Bonds in Some Compounds and Binary Alloys by the Method of X‐Ray Spectroscopy, Trans. Metall. Soc. AIME, 245, 1191

10.1063/1.1700918

Grimvall G., 1990, Boron‐Rich Solids, AIP Conference Proceedings, 423

10.1351/pac198557101383

Savitskii E. M., 1970, Chemical Stability of Hafnium Diboride, Izv. Akad. Nauk SSSR Neorganich. Mater., 6, 120

Ivan'ko A. A., 1968, Handbook of Hardness Data

Clougherty E. V., 1964, Physical and Mechanical Properties of Transition Metal Diborides, IMD Spec. Rep. Ser., 10, 423

10.3891/acta.chem.scand.01-0893

10.1016/0022-5088(67)90115-4

10.1063/1.1736249

Samsonov G. V., 1958, Some Physical Properties of Cermets, Vop. Poroshkovoi Met. I Prochnosti Mater. Akad. Nauk Ukr. SSR, 5, 3

10.1111/j.1151-2916.1967.tb15112.x

10.1016/0022-5088(68)90073-8

10.1111/j.1151-2916.1967.tb15044.x

Samsonov G. V., 1971, Thermal Expansion of Diborides of Group IV and V Transition Metals, Tepl. Vysok. Temp., 9, 195

10.1016/0022-5088(88)90219-6

Mroz C., 1994, Processing TiZrC and TiZrB2, Am. Ceram. Soc. Bull., 73, 78

Lee H. B., 1999, Study on Synthesis and Characterization of TiZrB2 Composite by Microwave SHS, J. Kor. Ceram. Soc, 36, 7

10.2109/jcersj.106.1196

Samsonov G. V., 1955, Investigation of the Laws of Formation of Isomorphous Boride Alloys, Zh. Fiz. Khim., 29, 839

10.1002/9780470314821.ch15

Talmy I. G., 1995, Ceramic Matrix Composites‐ Advanced High Temperature Structural Materials, Materials Research Society Symposium Proceedings, 81

Meerson G. A., 1959, Certain Properties of Alloys in the Systems TiB2–CrB, TiB2–W2B5, and ZrB–CrB2, Sbornik Nauch. Trudov. Nauch.-Tekh. Obshchestva Tsvetnoi Met. Moskov. Inst. Tsvetn. Metal. i Zolota, 29, 323

10.1111/j.1151-2916.2003.tb03361.x

10.1111/j.1151-2916.1987.tb05630.x

Fendler E., 1992, Proceedings of the 4th International Symposium on Ceramic Materials and Components for Engines, June 10–12, 1991, 204

Schwarzkopf P., 1953, Refractory Hard Metals. Chapter 26

10.1007/978-94-009-2101-6_8

10.1007/978-3-642-66620-9_20

Mroz C., 1994, Zirconium Diboride, Am. Ceram. Soc. Bull., 73, 141

10.1002/9780470314234.ch5

10.1111/j.1151-2916.1995.tb08696.x

10.1111/j.1151-2916.2001.tb00714.x

10.1111/j.1551-2916.2006.00949.x

10.1016/j.jallcom.2003.08.086

10.1016/j.scriptamat.2004.01.018

10.1007/978-94-009-2101-6_1

10.1023/B:JMSC.0000041702.76858.a7

10.1021/cm00035a013

10.1023/B:JMSC.0000041701.01103.41

G. A.ZankU.S. Patent 5 449 646 issued September 12 1995.

10.1016/j.matlet.2006.06.024

10.1023/B:JMSC.0000041699.31019.03

Blum Y. D., 2005, Ceramic Transactions Vol. 177: Innovative Processing and Synthesis of Ceramics, Glasses and Composites IX, 103

10.1557/JMR.2000.0359

Feng H. J., 1992, Combustion Synthesis of Ceramic‐Metal Composite Materials, The Zirconium Diboride–Alumina–Aluminum System, 1, 228

10.1023/A:1013245413840

10.1016/j.msea.2003.08.021

10.1016/S0955-2219(03)00120-1

Mishra S. K., 2002, Effect of Fe and Cr Addition on the Sintering Behavior of ZrB2 Produced by Self‐Propagating High‐Temperature Synthesis, J. Am. Ceram. Soc., 85, 2846, 10.1111/j.1151-2916.2002.tb00540.x

Chamberlain A. L., 2006, Reactive Hot Pressing of Zirconium Diboride, J. Mater. Res.

10.1111/j.1151-2916.1989.tb06252.x

10.1111/j.1151-2916.2002.tb00420.x

10.1111/j.1151-2916.1966.tb13243.x

Chown J., 1968, Science of Ceramics, 53

10.1111/j.1151-2916.1969.tb12655.x

Fenter J. R., 1971, Refractory Diborides as Engineering Materials, SAMPE Quarter., 2, 1

10.1007/BF00792032

10.1111/j.1151-2916.1969.tb12654.x

10.1106/GRKW-RKM4-8CKE-QYET

10.1016/S0955-2219(02)00114-0

Meerson G. A., 1968, Activated Sintering of Zirconium Boride, Inorg. Mater., 4, 267

10.1016/S0921-5093(02)00520-8

E. V.Clougherty R. J.Hill W. H.Rhodes andE. T.Peters “Research and Development of Refractory Oxidation‐Resistant Diborides Part II Volume II. Processing and Characterization ” AFML‐TR‐68‐190 (DTIC AD‐866558) January 1970.

W. H.Rhodes E. V.Clougherty andD.Kalish “Research and Development of Refractory Oxidation‐Resistant Diborides Part II Volume IV. Mechanical Properties ” AFML‐TR‐68‐190 (DTIC AD‐865809) January 1970.

10.1016/S0955-2219(01)00284-9

Bellosi A., 2004, Euro Ceramics VIII—Part 2, Vols. 264–268, Key Engineering Materials, 787

10.1016/S1359-6462(01)01229-5

10.1002/adem.200300349

Chamberlain A., 2003, Ceramic Transactions, Vol. 153, Advances in Ceramic Matrix Composites IX, 299

10.1557/jmr.2006.0180

10.1111/j.1744-7402.2006.02060.x

10.1023/B:JMSC.0000041689.90456.af

10.1002/adem.200400016

10.1007/s00339-005-3327-9

10.1557/jmr.2006.0321

Monteverde F., 2002, Euro Ceramics VII—Part 2, Vols. 206–213, Key Engineering Materials, 961

10.1557/JMR.2004.0460

10.1002/adem.200400184

10.1016/j.solidstatesciences.2005.02.007

Coble R. L., 1973, Investigation of Boride Compounds for Very High Temperature Applications, NTIS Report AD 428006, 82

Kisliy P. S., 1970, Theory and Technology of Sintering, Thermal, and Chemicothermal Treatment Processes, Powder Metall. Metal Ceram., 9, 549

Baumgartner H. R., 1984, Sintering and Properties of Titanium Diboride Made From Powder Synthesized in a Plasma‐Arc Heater, J. Am. Ceram. Soc., 67, 207, 10.1111/j.1151-2916.1984.tb19744.x

Pastor H., 1977, Boron and Refractory Borides, 454

Meerson G. A., 1968, Activated Sintering of Zirconium Boride, Inorg. Mater., 4, 267

10.1179/pom.1965.8.15.009

Kisliy P. S., 1971, On the Sintering Process of Zirconium Diboride With Tungsten, Phys. Sintering, 3, 29

10.1007/BF01290536

O.KidaandY.Segawa. U.S. Patent 4 636 481 January 13 1987.

O.KidaandY.Segawa. U.S. Patent 4 678 759 July 7 1987.

10.1007/BF01132409

Sciti D., 2006, Properties of a Pressureless‐Sintered ZrB2–MoSi2 Ceramic Composite, J. Am. Ceram. Soc., 89, 2320, 10.1111/j.1551-2916.2006.00999.x

10.1111/j.1551-2916.2005.00739.x

10.1023/B:JMSC.0000041691.41116.bf

10.1111/j.1151-2916.2003.tb03498.x

10.1111/j.1151-2916.1975.tb18990.x

Zhang G.‐J., 2000, Reactive Hot Pressing of ZrB2–SiC Composites, J. Am. Ceram. Soc., 83, 2330, 10.1111/j.1151-2916.2000.tb01558.x

Monteverde F., 2005, Progress in the Fabrication of Ultra‐High‐Temperature Ceramics, “In Situ” Synthesis, Microstructure and Properties of a Reactive Hot-Pressed HfB2–SiC Composite, 65, 1869

10.1111/j.1551-2916.2006.01299.x

Wu W.‐W., 2006, Reactive Hot Pressing of ZrB2–SiC–ZrC Ultra High‐Temperature Ceramics at 1800°C, J. Am. Ceram. Soc., 89, 2967, 10.1111/j.1551-2916.2006.01145.x

Talmy I. G., 1998, Properties of Ceramics in the ZrB2/ZrC/SiC System Prepared by Reactive Processing, Ceram. Eng. Sci. Proc., 19, 105

10.1016/S1293-2558(02)00086-9

10.1016/j.ijrmhm.2004.03.002

10.1111/j.1551-2916.2006.01083.x

10.1016/j.matchemphys.2006.02.003

10.1016/j.jallcom.2006.01.107

10.1063/1.1525404

10.1007/BF00552439

Ferber M. K., 1983, Effect of Microstructure on the Properties of TiB2 Ceramics, J. Am. Ceram. Soc., 66, C2, 10.1111/j.1151-2916.1983.tb09974.x

10.1007/s10853-006-1274-2

10.1016/S0955-2219(02)00140-1

10.1016/S0955-2219(03)00607-1

10.1016/j.jeurceramsoc.2006.07.003

10.1111/j.1151-2916.1978.tb16121.x

Kern E. L., 1969, Thermal Properties of Silicon Carbide from 20 to 2000 deg, Mater. Res. Bull., S25

Barsoum M. W., 1997, Fundamentals of Ceramics, 488

10.4028/www.scientific.net/KEM.287.160

10.1016/0022-5088(69)90134-9

Jun C. K., 1972, Elastic Modulus of Dense Silicon Carbide, Mater. Res. Bull., 7, 63, 10.1016/0025-5408(72)90070-0

10.1007/BF00587691

10.1111/j.1151-2916.1990.tb06720.x

Maloy S., 1991, Carbon Additions to Molybdenum Disilicide, Improved High Temperature Mechanical Properties, 74, 2704

10.1016/0001-6160(83)90046-9

10.1016/0001-6160(83)90047-0

10.1038/347455a0

Kovar D., 1997, Fibrous Monolithic Ceramics, J. Am. Ceram. Soc., 80, 2471, 10.1111/j.1151-2916.1997.tb03148.x

10.1111/j.1151-2916.1955.tb14545.x

10.1111/j.1151-2916.1963.tb19778.x

Hasselman D. P. H., 1970, Thermal Stress Resistance Parameters for Brittle Refractory Ceramics, Bull. Am. Ceram. Soc., 49, 1033

10.1111/j.1151-2916.1955.tb14546.x

Clougherty E. V., 1969, Materials and Processes for the 1970's – Vol. 15. Proceedings of the 15th SAMPE Symposium, April 29–May 1, 1969, 297

10.1111/j.1151-2916.1969.tb12655.x

Monteverde F., 2005, Progress in the Fabrication of Ultra‐High‐Temperature Ceramics, “In Situ” Synthesis, Microstructure and Properties of a Reactive Hot-Pressed HfB2-SiC Composite, 65, 1869

10.1016/S0955-2219(03)00644-7

Kaufman L., 1967, Oxidation Characteristics of Hafnium and Zirconium Diboride, Trans. Metall. Soc. AIME, 239, 458

10.1149/1.2424154

10.1149/1.2408279

10.1007/978-1-4684-3141-4_4

10.1149/1.2426263

Bargeron C. B., 1993, Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400°C and 2100°C, J. Hopkins APL Tech. Digest, 14, 29

10.1149/1.1618226

10.1016/0022-5088(68)90067-2

10.1111/j.1551-2916.2005.00599.x

Bongiorno A., 2006, A Perspective on Modeling Materials in Extreme Environments, Oxidation of Ultra-High Temperature Ceramics, 31, 410

Tripp W. C., 1973, Effect of an SiC Addition on the Oxidation of ZrB2, Ceram. Bull., 52, 612

Clougherty E. V., 1968, Synthesis of Oxidation Resistant Diboride Composites, Trans. Metall. Soc. AIME, 242, 1077

10.1149/1.1786929

10.1016/j.corsci.2004.09.019

10.1016/j.jeurceramsoc.2006.10.012

10.1002/9780470294680.ch27

Chamberlain A. L., 2005, Oxidation of ZrB2–SiC Ceramics Under Atmospheric and Reentry Conditions, Refract. Appl. Trans., 1, 1

Lavrenko V. A., 1981, High Temperature Reactions of Materials of the ZrB2–ZrSi2 System With Oxygen, Poroshkovaya Metall., 6, 56

Fahrenholtz W. G., 2007, Thermodynamic Analysis of ZrB2–SiC Oxidation, Formation of a SiC–Depleted Region, 90, 143

10.1111/j.1551-2916.2006.01229.x

10.1557/JMR.2005.0111

Opila E., 2004, Oxidation of ZrB2‐ and HfB2‐based Ultra‐High Temperature Ceramics, Effect of Ta Additions, 39, 5969

Talmy I. G., 2001, High Temperature Corrosion and Materials Chemistry III, 144

Bull J. D., Advanced Materials: Meeting Economic Challenges, Proceedings of the 24th International SAMPE Technical Conference, October 20–22, 1992, Toronto, Canada, T1092