Refractive Pose Refinement
Tóm tắt
Từ khóa
Tài liệu tham khảo
Absil, P. A., Mahony, R., & Sepulchre, R. (2009). Optimization algorithms on matrix manifolds. Princeton University Press.
Agrawal, A., Ramalingam, S., Taguchi, Y., & Chari, V. (2012). A theory of multi-layer flat refractive geometry. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3346–3353). IEEE.
AliceVision. (2022). Photogrammetric computer vision framework. https://alicevision.org/
Arun, K. S., Huang, T. S., & Blostein, S. D. (1987). Least-squares fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 9(5), 698–700. https://doi.org/10.1109/TPAMI.1987.4767965
Cassidy, M., Mélou, J., Quéau, Y., Lauze, F., & Durou, J. D. (2020). Refractive multi-view stereo. In International conference on 3D vision (3DV 2020).
Chadebecq, F., Vasconcelos, F., Dwyer, G., Lacher, R., Ourselin, S., Vercauteren, T., & Stoyanov, D. (2017). Refractive structure-from-motion through a flat refractive interface. In Proceedings of the IEEE international conference on computer vision (pp. 5315–5323).
Chadebecq, F., Vasconcelos, F., Lacher, R., Maneas, E., Desjardins, A., Ourselin, S., Vercauteren, T., & Stoyanov, D. (2019). Refractive two-view reconstruction for underwater 3d vision. International Journal of Computer Vision. https://doi.org/10.1007/s11263-019-01218-9
Chang, Y. J., & Chen, T. (2011). Multi-view 3d reconstruction for scenes under the refractive plane with known vertical direction. In 2011 international conference on computer vision (pp. 351–358). IEEE.
Chari, V., & Sturm, P. (2009). Multiple-view geometry of the refractive plane. In BMVC 2009-20th British machine vision conference (pp. 1–11). The British Machine Vision Association (BMVA).
Ferraz, L., Binefa, X., & Moreno-Noguer, F. (2014). Very fast solution to the pnp problem with algebraic outlier rejection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 501–508).
Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.
Fragoso, V., DeGol, J., & Hua, G. (2020). gdls*: Generalized pose-and-scale estimation given scale and gravity priors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2210–2219).
Gao, X. S., Hou, X. R., Tang, J., & Cheng, H. F. (2003). Complete solution classification for the perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 930–943.
Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F. J., & Medina-Carnicer, R. (2016). Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognition, 51, 481–491.
gP+s. (2014). https://github.com/jonathanventura/genposeandscale
Grossberg, M. D., & Nayar, S. K. (2001). A general imaging model and a method for finding its parameters. In Proceedings of the IEEE international conference on computer vision, ICCV 2001 (Vol. 2, pp. 108–115). IEEE.
Hadfield, S., Lebeda, K., & Bowden, R. (2018). Hard-pnp: Pnp optimization using a hybrid approximate representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(3), 768–774.
Haner, S., & Åström, K. (2015). Absolute pose for cameras under flat refractive interfaces. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1428–1436).
Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd edn.). Cambridge University Press. ISBN: 0521540518.
Hedrick, B. P., Heberling, J. M., Meineke, E. K., Turner, K. G., Gassa, C. J., Park, D. S., Kennedy, J., Clarke, J. A., Cook, J. A., Blackburn, D. C., Edwards, S. V., & Davis, C. C. (2020). Digitization and the future of natural history collections. BioScience, 70(3), 243–251.
Hesch, J. A., & Roumeliotis, S. I. (2011). A direct least-squares (DLS) method for pnp. In Proceedings of the IEEE international conference on computer vision (pp. 383–390). IEEE.
Hu, X., Lauze, F., & Pedersen, K. S. (2022a). RefractiveSfM. https://github.com/diku-dk/RefractiveSfM
Hu, X., Lauze, F., Pedersen, K. S., & Quéau, Y. (2022b). DIKU refractive scenes dataset 2022. Data. https://doi.org/10.17894/ucph.5d1b9bea-b105-4d43-aefb-c53df7806c2a
Hu, X., Lauze, F., Pedersen, K. S., Mélou, J. (2021). Absolute and relative pose estimation in refractive multi view. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2569–2578).
Ichimaru, K., Taguchi, Y., & Kawasaki, H. (2019). Unified underwater structure-from-motion. In Proceedings—2019 international conference on 3D vision, 3DV 2019 (pp. 524–532).
Jordt, A. (2013). Underwater 3d reconstruction based on physical models for refraction and underwater light propagation (Ph.D thesis). https://macau.uni-kiel.de/receive/diss_mods_00014162
Jordt, A., & Koch, R. (2012). Refractive calibration of underwater cameras. In Proceedings of the European conference on computer vision (pp. 846–859). Springer.
Jordt, A., & Koch, R. (2013). Refractive structure-from-motion on underwater images. In Proceedings of the IEEE international conference on computer vision (pp. 57–64).
Jordt, A., Köser, K., & Koch, R. (2016). Refractive 3d reconstruction on underwater images. Methods in Oceanography, 15, 90–113.
Kang, L., Wu, L., Yang, Y. H. (2012b). Two-view underwater structure and motion for cameras under flat refractive interfaces. In Proceedings of the European conference on computer vision (pp. 303–316). Springer.
Kang, L., Wu, L., & Yang, Y. H. (2012). Experimental study of the influence of refraction on underwater three-dimensional reconstruction using the svp camera model. Applied Optics, 51(31), 7591–7603.
Kneip, L., & Furgale, P. (2014). Opengv: A unified and generalized approach to real-time calibrated geometric vision. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 1–8). IEEE.
Kneip, L., & Li, H. (2014). Efficient computation of relative pose for multi-camera systems. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 446–453).
Kneip, L., Furgale, P., & Siegwart, R. (2013). Using multi-camera systems in robotics: Efficient solutions to the npnp problem. In Proceedings of the IEEE international conference on robotics and automation (pp. 3770–3776). IEEE.
Kneip, L., Li, H., & Seo, Y. (2014). Upnp: An optimal o (n) solution to the absolute pose problem with universal applicability. In Proceedings of the European conference on computer vision (pp. 127–142). Springer.
Kneip, L., Scaramuzza, D., & Siegwart, R. (2011). A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2969–2976).
Kroeger, T., Timofte, R., Dai, D., & Van Gool, L. (2016). Fast optical flow using dense inverse search. In Proceedings of the European conference on computer vision (pp. 471–488). Springer.
Kukelova, Z., Bujnak, M., & Pajdla, T. (2008). Automatic generator of minimal problem solvers. In Proceedings of the European conference on computer vision (pp. 302–315). Springer.
Lavest, J. M., Rives, G., & Lapresté, J. T. (2000). Underwater camera calibration. In Proceedings of the European conference on computer vision (pp. 654–668). Springer.
Lee, G.H., Li, B., Pollefeys, M., & Fraundorfer, F. (2016). Minimal solutions for pose estimation of a multi-camera system. In 16th international symposium of robotics research, ISRR 2013 (pp. 521–538). Springer.
Lepetit, V., Moreno-Noguer, F., & Fua, P. (2009). Epnp: An accurate o (n) solution to the pnp problem. International Journal of Computer Vision, 81(2), 155.
Li, H., Hartley, R., & Kim, J. H. (2008). A linear approach to motion estimation using generalized camera models. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE.
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.
Łuczyński, T., Pfingsthorn, M., & Birk, A. (2017). The pinax-model for accurate and efficient refraction correction of underwater cameras in flat-pane housings. Ocean Engineering, 133, 9–22.
Ma, Y., Soatto, S., Košecká, J., & Sastry, S. (2004). An invitation to 3-D vision. From Images to Geometric Models. Interdisciplinary Applied Mathematics. Springer.
Miraldo, P., Dias, T., & Ramalingam, S. (2018). A minimal closed-form solution for multi-perspective pose estimation using points and lines. In Proceedings of the European conference on computer vision (pp. 474–490).
MMPPE. (2018). https://github.com/pmiraldo/MinimalMultiPerspectivePose
Moulon, P., Monasse, P., Marlet, R. (2012). Adaptive structure from motion with a contrario model estimation. In Proceedings of the Asian computer vision conference (pp. 257–270). Springer. https://doi.org/10.1007/978-3-642-37447-0_20
Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., & Sayd, P. (2009). Generic and real-time structure from motion using local bundle adjustment. Image and Vision Computing, 27(8), 1178–1193.
NHMD. (2022a). Amber collection, Natural History Museum of Denmark (NHMD). https://samlinger.snm.ku.dk/en/dry-and-wet-collections/zoology/entomology/amber-collection/
NHMD. (2022b). Herpetology collection, Natural History Museum of Denmark (NHMD). https://samlinger.snm.ku.dk/en/dry-and-wet-collections/zoology/herpetology-collection/
Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6), 756–770.
Nistér, D., & Stewénius, H. (2007). A minimal solution to the generalised 3-point pose problem. Journal of Mathematical Imaging and Vision, 27(1), 67–79.
Oleari, F., Kallasi, F., Rizzini, D. L., Aleotti, J., & Caselli, S. (2015). An underwater stereo vision system: From design to deployment and dataset acquisition. In OCEANS 2015-Genova (pp. 1–6). IEEE.
OpenCV. (2022). Open source computer vision library. https://opencv.org/
Pedersen, M., Bengtson, S. H., Gade, R., Madsen, N., & Moeslund, T. B. (2018). Camera calibration for underwater 3d reconstruction based on ray tracing using Snell’s law. In 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW) (pp. 1491–14917). https://doi.org/10.1109/CVPRW.2018.00190
Pless, R. (2003). Using many cameras as one. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. II–587). IEEE.
Rizzini, D. L., Kallasi, F., Oleari, F., & Caselli, S. (2015). Investigation of vision-based underwater object detection with multiple datasets. International Journal of Advanced Robotic Systems, 12(6), 77.
Sadowski, E. M., Schmidt, A. R., Seyfullah, L. J., Solórzano-Kraemer, M. M., Neumann, C., Perrichot, V., Hamann, C., Milke, R., & Nascimbene, P. C. (2021). Conservation, preparation and imaging of diverse ambers and their inclusions. Earth-Science Reviews, 220, 103653.
Schönberger, J. L., & Frahm, J. M. (2016). Structure-from-motion revisited. In Proceedings of the IEEE .
Schonberger, J. L., & Frahm, J. M. (2016). Structure-from-motion revisited. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4104–4113).
Stewenius, H., Nistér, D., Oskarsson, M., & Åström, K. (2005). Solutions to minimal generalized relative pose problems. In OMNIVIS 2005.
Sturm, P. (2005). Multi-view geometry for general camera models. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 206–212). IEEE.
Sweeney, C., Fragoso, V., Höllerer, T., & Turk, M. (2014). gdls: A scalable solution to the generalized pose and scale problem. In Proceedings of the European conference on computer vision (pp. 16–31). Springer.
Telem, G., & Filin, S. (2010). Photogrammetric modeling of underwater environments. ISPRS Journal of Photogrammetry and Remote Sensing, 65(5), 433–444.
Treibitz, T., Schechner, Y., Kunz, C., & Singh, H. (2011). Flat refractive geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 51–65.
Ventura, J., Arth, C., & Lepetit, V. (2015). An efficient minimal solution for multi-camera motion. In Proceedings of the IEEE international conference on computer vision (pp. 747–755).
Ventura, J., Arth, C., Reitmayr, G., & Schmalstieg, D. (2014). A minimal solution to the generalized pose-and-scale problem. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 422–429).
Xiong, J., & Heidrich, W. (2021a). In-the-wild single camera 3d reconstruction through moving water surfaces. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 12558–12567).
Xiong, J., & Heidrich, W. (2021b). In-the-wild single camera 3d reconstruction through moving water surfaces. In Proceedings of the IEEE/CVF international conference on computer vision (ICCV) (pp. 12558–12567).
Zhang, P., Wu, Z., Wang, J., Kong, S., Tan, M., & Yu, J. (2021). An open-source, fiducial-based, underwater stereo visual-inertial localization method with refraction correction. In 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4331–4336). https://doi.org/10.1109/IROS51168.2021.9636198