Reflected Stochastic Burgers Equation with Jumps
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albeverio, S., Wu, J.L., Zhang, T.S.: Parabolic SPDEs driven by Poisson white noise. Stoch. Process. Appl. 74, 21–36 (1998)
Assaad, O., Tudor, C.: Pathwise analysis and parameter estimation for the stochastic Burgers equation. Bulletin des Sciences Mathématiques 170, 102995 (2021)
Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165(2), 211–232 (1994)
Da Prato, G., Debussche, A., Teman, R.: Stochastic Burgers equation. Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)
Dalang, R., Mueller, C., Zambotti, L.: Hitting properties of parabolic SPDE’s with reflection. Ann. Probab. 34(4), 1423–1450 (2006)
Debbi, L., Dozzi, M.: On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch. Process. Appl. 115, 1764–1781 (2005)
Donati-Martin, C., Pardoux, E.: White noise driven SPDEs with reflection. Probab. Theory Relat. Fields 95(1), 1–24 (1993)
Dong, Z.: On the uniqueness of invariant measure of the Burgers equation driven by Lévy processes. J. Theoret. Probab. 21, 322–335 (2008)
Dong, Z., Xu, T.: One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal. 234, 631–678 (2007)
Duan, J., Peng, J.: White noise driven SPDEs with oblique reflection: existence and uniqueness. J. Math. Anal. Appl. 480(1), 123356 (2019)
Essaky, E., Ouknine, Y.: Homogenization of multivalued partial differential equations via reflected backward stochastic differential equations. Stoch. Anal. Appl. 22(1), 307–336 (2004)
Fournier, N.: Malliavin calculus for parabolic SPDEs with jumps. Stoch. Process. Appl. 87(1), 115–147 (2000)
Fu, G., Horst, U., Qiu, J.: Maximum principle for quasi-linear reflected backward SPDEs. J. Math. Anal. Appl. 456, 307–336 (2017)
Gyöngy, I.: Existence and uniqueness results for similinear stochastic partial differential equations. Stoch. Process. Appl. 73, 271–299 (1988)
Gyöngy, I., Nualart, D.: On the stochastic Burgers equation in the real line. Ann. Probab. 27, 782–802 (1999)
Hopf, E.: The partial differential equation $$u_t+uu_x=\mu u_{xx}$$. Comm. Pure Appl. Math. 3, 201–230 (1950)
Menaldi, J.: Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32(5), 733–744 (1983)
Menaldi, J., Robin, M.: Reflected diffusion processes with jumps. Ann. Probab. 13(2), 319–341 (1985)
Mytnik, L.: Stochastic partial differential equations driven by stable noise. Probab. Theory Related Fields 123(2), 157–201 (2002)
Nualart, D., Pardoux, E.: White noise driven quasilinear SPDEs with reflection. Probab. Theory Relat. Fields 93(1), 77–89 (1992)
Truman, A., Wu, J.: Stochastic Burgers equation with Lévy space-time white noise. In: Davies, I.M., Truman, A., Hassan, O., Morgan, K., Weatherill, N.P. (eds) Probabilistic Methods in Fluids, Proceedings of the Swansea 2002 Workshop, pp. 298-323. World Sci. Publishing, River Edge, NJ (2003)
Wu, J., Xie, B.: On a Burgers type nonlinear equation perturbed by a pure jump Lévy noise in $${\mathbb{R}}^d$$. Bulletin des Sciences Mathématiques 136(5), 484–506 (2012)
Zambotti, L.: A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge. J. Funct. Anal. 180(1), 195–209 (2001)
Zhang, T.: Systems of stochastic partial differential equations with reflection: existence and uniqueness. Stoch. Process. Appl. 33(2), 137–151 (2010)
Zhang, T.: White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities. Potential Anal. 121(6), 1356–1372 (2011)