Reflected Stochastic Burgers Equation with Jumps

Hongchao Qian1, Jun Peng1, Ruizhi Li2, Yewei Gui2
1School of Mathematics and Statistics, Central South University, Changsha, 410075, Hunan, China
2State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang, 621000, Sichuan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albeverio, S., Wu, J.L., Zhang, T.S.: Parabolic SPDEs driven by Poisson white noise. Stoch. Process. Appl. 74, 21–36 (1998)

Assaad, O., Tudor, C.: Pathwise analysis and parameter estimation for the stochastic Burgers equation. Bulletin des Sciences Mathématiques 170, 102995 (2021)

Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165(2), 211–232 (1994)

Burgers, J.: The Nonlinear Diffusion Equation. Springer, Dordrecht (1974)

Da Prato, G., Debussche, A., Teman, R.: Stochastic Burgers equation. Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)

Dalang, R., Mueller, C., Zambotti, L.: Hitting properties of parabolic SPDE’s with reflection. Ann. Probab. 34(4), 1423–1450 (2006)

Debbi, L., Dozzi, M.: On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch. Process. Appl. 115, 1764–1781 (2005)

Donati-Martin, C., Pardoux, E.: White noise driven SPDEs with reflection. Probab. Theory Relat. Fields 95(1), 1–24 (1993)

Dong, Z.: On the uniqueness of invariant measure of the Burgers equation driven by Lévy processes. J. Theoret. Probab. 21, 322–335 (2008)

Dong, Z., Xu, T.: One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal. 234, 631–678 (2007)

Duan, J., Peng, J.: White noise driven SPDEs with oblique reflection: existence and uniqueness. J. Math. Anal. Appl. 480(1), 123356 (2019)

Essaky, E., Ouknine, Y.: Homogenization of multivalued partial differential equations via reflected backward stochastic differential equations. Stoch. Anal. Appl. 22(1), 307–336 (2004)

Fournier, N.: Malliavin calculus for parabolic SPDEs with jumps. Stoch. Process. Appl. 87(1), 115–147 (2000)

Fu, G., Horst, U., Qiu, J.: Maximum principle for quasi-linear reflected backward SPDEs. J. Math. Anal. Appl. 456, 307–336 (2017)

Gyöngy, I.: Existence and uniqueness results for similinear stochastic partial differential equations. Stoch. Process. Appl. 73, 271–299 (1988)

Gyöngy, I., Nualart, D.: On the stochastic Burgers equation in the real line. Ann. Probab. 27, 782–802 (1999)

Hopf, E.: The partial differential equation $$u_t+uu_x=\mu u_{xx}$$. Comm. Pure Appl. Math. 3, 201–230 (1950)

Menaldi, J.: Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32(5), 733–744 (1983)

Menaldi, J., Robin, M.: Reflected diffusion processes with jumps. Ann. Probab. 13(2), 319–341 (1985)

Mytnik, L.: Stochastic partial differential equations driven by stable noise. Probab. Theory Related Fields 123(2), 157–201 (2002)

Nualart, D., Pardoux, E.: White noise driven quasilinear SPDEs with reflection. Probab. Theory Relat. Fields 93(1), 77–89 (1992)

Truman, A., Wu, J.: Stochastic Burgers equation with Lévy space-time white noise. In: Davies, I.M., Truman, A., Hassan, O., Morgan, K., Weatherill, N.P. (eds) Probabilistic Methods in Fluids, Proceedings of the Swansea 2002 Workshop, pp. 298-323. World Sci. Publishing, River Edge, NJ (2003)

Wu, J., Xie, B.: On a Burgers type nonlinear equation perturbed by a pure jump Lévy noise in $${\mathbb{R}}^d$$. Bulletin des Sciences Mathématiques 136(5), 484–506 (2012)

Zambotti, L.: A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge. J. Funct. Anal. 180(1), 195–209 (2001)

Zhang, T.: Systems of stochastic partial differential equations with reflection: existence and uniqueness. Stoch. Process. Appl. 33(2), 137–151 (2010)

Zhang, T.: White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities. Potential Anal. 121(6), 1356–1372 (2011)

Zhang, T.: Stochastic Burgers type equations with reflection: existence, uniqueness. J. Diff. Equat. 267(8), 4537–4571 (2019)