Refinement equations and spline functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Auscher, P.: Wavelet bases for L 2(R) with rational dilation factor. In: Ruskai, M.B., et al. (eds.) Wavelets and their Applications, pp. 439–452. Jones and Bartlett, Boston (1992)
Cavaretta, A., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Amer. Math. Soc. 93, 1–186 (1991)
Dai, X.-R., Feng, D.-J., Wang, Y.: Classification of refinable splines. Constr. Approx. 24, 187–200 (2006)
Dai, X.-R., Feng, D.-J., Wang, Y.: Refinable functions with non-integer dilations. J. Funct. Anal. 250, 1–20 (2007)
Dai, X.-R., Feng, D.-J., Wang, Y.: Structure of refinable splines. Appl. Comput. Harmon. Anal. 22, 374–381 (2007)
Daubechies, I., Lagarias, J.C.: Two-scale difference equations I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22, 1388–1410 (1991)
Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)
de Mathan, B.: Numbers contravening a condition in density modulo 1. Acta Math. Acad. Sci. Hung. 36, 237–241 (1980)
DeVore, R., Ron, A.: Developing a computation-friendly mathematical foundation for spline functions. SIAM News 38, 5 (2005), May
Erdös, P.: Problems and results on Diophantine approximations. II, Repartition modulo 1, Actes Colloq. Marseille-Luminy 1974. Lecture Notes in Math. 475, 89–99 (1975)
Feng, D.J., Wang, Y.: Bernoulli convolutions associate with certain non-Pisot numbers. Adv. Math. 187, 173–194 (2004)
Goodman, T.N.T.: Refinable spline functions. In: Chui, C.C., Schumaker, L.L. (eds.) Approximation Theory IX, pp. 1–25. Vanderbilt University Press, Nashville, TN (1998)
Guan, Y., Lu, S., Tang, Y.: Characterization of compactly supported refinable splines whose shifts form a Riesz basis. J. Approx. Theory 133, 245–250 (2005)
Jia, R.Q., Micchelli, C.A.: Using the Refinement Equations for the Construction of Pre-wavelets. II. Powers of Two, Curves and Surfaces, pp. 209–246. Academic Press, Boston, MA (1991)
Jia, R.Q., Sivakumar, N.: On the linear independence of integer translates of box splines with rational direction. Linear Algebra Appl. 135, 19–31 (1990)
Khintchine, A.: Über eine Klasse linearer diophantischer Approximationen. Rend. Circ. Mat. Palermo 50, 170–195 (1926)
Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics vol. 211. Springer, New York (2002)
Lawton, W., Lee, S.L., Shen, Z.: Characterization of compactly supported refinable splines. Adv. Comput. Math. 3, 137–145 (1995)
Peres, Y., Schlag, W.: Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102, 193–251 (2000)
Schinzel, A.: Polynomials with Special Regard to Reducibility. Encyclopedia of Mathematics and its Applications, vol. 77. CUP, Cambridge (2000)