Refinement equations and spline functions

Artūras Dubickas1,2, Zhiqiang Xu3
1Department of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
2Institute of Mathematics and Informatics, Vilnius, Lithuania
3Institute of Computational Mathematics and Science and Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Auscher, P.: Wavelet bases for L 2(R) with rational dilation factor. In: Ruskai, M.B., et al. (eds.) Wavelets and their Applications, pp. 439–452. Jones and Bartlett, Boston (1992)

Cavaretta, A., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Amer. Math. Soc. 93, 1–186 (1991)

Dai, X.-R., Feng, D.-J., Wang, Y.: Classification of refinable splines. Constr. Approx. 24, 187–200 (2006)

Dai, X.-R., Feng, D.-J., Wang, Y.: Refinable functions with non-integer dilations. J. Funct. Anal. 250, 1–20 (2007)

Dai, X.-R., Feng, D.-J., Wang, Y.: Structure of refinable splines. Appl. Comput. Harmon. Anal. 22, 374–381 (2007)

Daubechies, I., Lagarias, J.C.: Two-scale difference equations I. Existence and global regularity of solutions. SIAM J. Math. Anal. 22, 1388–1410 (1991)

Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

de Mathan, B.: Numbers contravening a condition in density modulo 1. Acta Math. Acad. Sci. Hung. 36, 237–241 (1980)

de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer, New York (1993)

DeVore, R., Ron, A.: Developing a computation-friendly mathematical foundation for spline functions. SIAM News 38, 5 (2005), May

Dubickas, A.: On the fractional parts of lacunary sequences. Math. Scand. 99, 136–146 (2006)

Erdös, P.: On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61, 974–976 (1939)

Erdös, P.: Problems and results on Diophantine approximations. II, Repartition modulo 1, Actes Colloq. Marseille-Luminy 1974. Lecture Notes in Math. 475, 89–99 (1975)

Feng, D.J., Wang, Y.: Bernoulli convolutions associate with certain non-Pisot numbers. Adv. Math. 187, 173–194 (2004)

Goodman, T.N.T.: Refinable spline functions. In: Chui, C.C., Schumaker, L.L. (eds.) Approximation Theory IX, pp. 1–25. Vanderbilt University Press, Nashville, TN (1998)

Guan, Y., Lu, S., Tang, Y.: Characterization of compactly supported refinable splines whose shifts form a Riesz basis. J. Approx. Theory 133, 245–250 (2005)

Jia, R.Q., Micchelli, C.A.: Using the Refinement Equations for the Construction of Pre-wavelets. II. Powers of Two, Curves and Surfaces, pp. 209–246. Academic Press, Boston, MA (1991)

Jia, R.Q., Sivakumar, N.: On the linear independence of integer translates of box splines with rational direction. Linear Algebra Appl. 135, 19–31 (1990)

Khintchine, A.: Über eine Klasse linearer diophantischer Approximationen. Rend. Circ. Mat. Palermo 50, 170–195 (1926)

Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics vol. 211. Springer, New York (2002)

Lawton, W., Lee, S.L., Shen, Z.: Characterization of compactly supported refinable splines. Adv. Comput. Math. 3, 137–145 (1995)

Peres, Y., Schlag, W.: Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102, 193–251 (2000)

Pollington, A.D.: On the density of the sequence {n k ξ}. Ill. J. Math. 23, 511–515 (1979)

Schinzel, A.: Polynomials with Special Regard to Reducibility. Encyclopedia of Mathematics and its Applications, vol. 77. CUP, Cambridge (2000)

Solomyak, B.: On the random series ∑ ±λ n (an Erdös problem). Ann. Math. 142, 611–625 (1995)

Sun, Q.: Refinable functions with compact support. J. Approx. Theory 86, 240–252 (1996)

Zhou, D.X.: Some characterizations for box spline wavelets and linear Diophantine equations. Rocky Mountain J. Math. 28, 1539–1560 (1998)