Refined gluing for vacuum Einstein constraint equations

Geometriae Dedicata - Tập 173 - Trang 393-415 - 2014
Erwann Delay1, Lorenzo Mazzieri2
1Faculté des Sciences, Laboratoire de mathématiques d’Avignon, Avignon, France
2Scuola Normale Superiore, Pisa, Italy

Tóm tắt

We first show that the connected sum along submanifolds introduced by the second author for compact initial data sets of the vacuum Einstein system can be adapted to the asymptotically Euclidean and to the asymptotically hyperbolic context. Then, we prove that in every case, and generically, the gluing procedure can be localized, in order to obtain new solutions which coincide with the original ones outside of a neighborhood of the gluing locus.

Tài liệu tham khảo

Andersson, L., Chruściel, P.T.: On asymptotic behavior of solutions of the constraint equations in general relativity with “hyperboloidal boundary conditions”. Dissert. Math. 355, 1–100 (1996) Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39(5), 661–693 (1986) Bartnik, R., Isenberg, J.: The Einstein equationsand the large scale behavior of gravitational fields. In: Chrusciel, P.T., Friedrich, H. (eds.) The Constraint Equations, pp. 1–39. Basel, Birkhäuser (2004) Beig, R., Chruściel, P.T., Schoen, R.: KIDs are non-generic. Ann. Henri Poincaré 6(1), 155–194 (2005) Christodoulou, D., O’Murchada, N.: The boost problem in general relativity. Commun. Math. Phys. 80, 171–300 (1981) Choquet-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952) Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mémoires de la S.M.F., n\(^0\)94, 103p. (2003) gr-qc/0301073 Corvino, J., Schoen, R.: On the asymptotics for the vacuum Einstein constraint equations. J. Differential Geom. 73(2), 185–217 (2006). gr-qc/0301071 Giaquinta, M., Martinazzi, L.: An introduction to the regularity thoery for elliptic systems, harmonic maps and minimal graphs. Edizioni della Normale (2005) Gicquaud, R.: De l’équation de prescription de courbure scalaire aux équations de contrainte en relativité générale sur une variété asymptotiquement hyperbolique. Journal de Mathmatiques Pures et Appliqus, 94(2), 200–227 (2010). arXiv:0802.3279 Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equation of Second Order. Springer, Berlin (1997) Isenberg, J., Maxwell, D., Pollack, D.: A gluing construction for non vacuum solutions of the Einstein constraint. Adv. Theor. Phys. 9, 129–172 (2005) Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint equations. Commun. Math. Phys. 231, 529–568 (2002) Lee, J.M.: Fredholm operators and Einstein metrics on conformally compact manifolds. Memoirs AMS 183(864), (2006) math.DG/0105046 Mazzieri, L.: Generalized connected sum construction for nonzero constant scalar curvature metrics. Commun. Part. Differ. Eqs. 33, 1–17 (2008) Mazzieri, L.: Generalized connected sum construction for scalar flat metrics. Manuscr. Math. 129, 137–168 (2009) Mazzieri, L.: Generalized gluing for Einstein constraint equations. Calc. Var. Partial Differ. Eqs. 34, 453–473 (2009)