Refined geometrically nonlinear theories of anisotropic laminated shells

Quarterly of Applied Mathematics - Tập 45 Số 1 - Trang 1-22 - 1987
Liviu Librescu1
1Tel-Aviv University

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. A. Ambartsumian, Theory of anisotropic shells, NASA Techn. Transl. F-118, 1964

Ambartsumyan, S. A., 1974, {\cyr Obshchaya teoriya anizotropnykh obolochek}

Ia. M. Grigorenko, Isotropic and anisotropic multilayered shells of revolution of variable rigidity, Naukova Dumka (in Russian), Kiev, 1973

J. R. Vinson and T. W. Chou, Composite materials and their use in structures, John Wiley & Sons, New York, Toronto, 1974

L. Librescu, Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures, Noordhoff Internat. Publishing, Leyden, 1975

R. B. Rikards and G. A. Teters, Stability of shells made of composite materials (in Russian), Zinatne, Riga, 1974

E. I. Grigoliuk and F. A. Kogan, Present status of the multilayered shell theory (in Russian), Prikladnaia Mechanika 8, 6, 1972

C. W. Bert and P. H. Francis, Composite material mechanics; Structural mechanics, AIAA Journ. 12 (1974)

C. W. Bert, Comparison of new plate theories applied to laminated composites, in Mechanics of Composite Materials, G. J. Dvorak (Ed.). ASME Winter Annual Meeting, Boston, MA, Nov. 1983, 1–9

J. N. Reddy, Finite-element modeling of layered, anisotropic composite plates and shells: A review of recent research, Shock and Vibration Digest 13 (1981)

A. E. Green and P. M. Naghdi, A theory of laminated composite plates, IMA J. Appl. Math. 29, 1–23 (1982)

E. I. Grigoliuk and P. P. Chulkov, On the theory of multilayered shells, in Contributions to the Theory of Aircraft Structures, Delft Univ., 171–183, 1972

L. Librescu, Nonlinear theory of elastic, anisotropic multilayered shells (in Russian), in Selected Topics in Applied Mechanics, Ed. L. I. Sedov, pp. 453–466, Nauka, Moskow, 1974

L. Librescu, Improved linear theory of elastic anisotropic multilayered shells (in Russian), Mekhanika Polimerov, Part I, No. 6, 1038–1050, Dec. Nov.-Dec. 1975, and Part II, No. 1 100–109, Jan.-Feb., 1976 (English Translat. by Plenum Publ. Corp.)

G. A. Wempner, Theory for moderately large deflections of sandwich shells with dissimilar facings, Internat. J. Solids and Structures 3, 367–392 (1967)

Reissner, Eric, 1948, Finite deflections of sandwich plates, J. Aeronaut. Sci., 15, 435, 10.2514/8.11610

I. K. Ebcioglu, Nonlinear theory of sandwich panels, in Developments in Theoretical and Applied Mechanics, Vol. 4, Ed. Daniel Frederik, Pergamon Press, Oxford and New York, 611–637, 1970

P. C. Yang, C. H. Norris and Y. Stavsky, Elastic-wave propagation in heterogeneous plates, Internat. J. Solids and Structures 2, 665–684 (1966)

J. M. Whitney and N. J. Pagano, Shear deformation in heterogeneous anistropic plates, J. Appl. Mech., 1031–1036 (1970)

R. B. Nelson and D. R. Lorch, A refined theory for laminated orthotropic plates, J. Appl. Mech. 41, 177–183 (1974)

K. H. Lo, R. M. Christensen, and E. M. Wu, A higher-order theory of plate deformation, Part 2, Laminated plates, ASME Journal of Applied Mechanics 44, 669–676 (1977)

J. N. Reddy and W. C. Chao, Nonlinear oscillation of laminated anisotropic, rectangular plates, ASME Journal of Applied Mechanics 49, 396–401 (1982)

J. A. Zukas and J. R. Vinson, Laminated transversal isotropic cylindrical shells, ASME Journal of Applied Mechanics 38, 400–407 (1971)

J. M. Whitney and C. T. Sun, A refined theory for laminated anisotropic, cylindrical shells, ASME Journal of Applied Mechanics, 471–476 (1974)

P. M. Naghdi, Foundations of elastic shell theories, in Progr. Solid Mechanics, Ed. I. N. Sneddon and R. Hill, 4, 1963

E. Reissner, On a variational theory for finite elastic deformation, J. Math. Phys. 32, 129–135 (1953)

L. M. Habip, Theory of elastic shells in the reference state, Ing. Archiv. 34, 228–237 (1965)

Green, A. E., 1970, Large elastic deformations

Leipholz, H., 1974, Theory of elasticity, 10.1007/978-94-010-9885-4

B. Budiansky, Remarks on theories of solid and structural mechanics, in Problems of Hydrodynamics and Continuum Mechanics, SIAM, 77–83 (1969)

Naghdi, P. M., 1963, On the nonlinear theory of elastic shells under the Kirchhoff hypothesis, Quart. Appl. Math., 21, 49, 10.1090/qam/145743

P. M. Naghdi, On the non-linear thermoelastic theory of shells, in Non-Classical Shell-Problems, North-Holland, Amsterdam, R.W.N., Warsaw, 5–26, 1964

L. E. Malvern, Introduction to the mechanics of a continuous medium, Prentice-Hall, Englewood Cliffs, 1969

Green, A. E., 1954, Theoretical elasticity

Brull, M., 1982, Strain measures and compatibility equations in the linear high-order shell theories, Quart. Appl. Math., 40, 15, 10.1090/qam/652046

Koiter, W. T., 1960, A consistent first approximation in the general theory of thin elastic shells, 12

Budiansky, B., 1963, On the “best” first-order linear shell theory, 129

Hildebrand, F. B., 1949, Notes on the foundations of the theory of small displacements of orthotropic shells, Tech. Notes Nat. Adv. Comm. Aeronaut., 1949, 59

J. N. Reddy, An accurate prediction of natural frequencies of laminated plates by a high-order theory, in Advances in Aerospace Structures and Materials, (Ed. Umar Yuceoglu) 1983 Winter Annual Meeting of ASME, Boston, MA., November, 1983 (Report)

Wainwright, W. L., 1963, On a nonlinear theory of elastic shells, Internat. J. Engrg. Sci., 1, 339, 10.1016/0020-7225(63)90012-0

L. Librescu, A physically nonlinear theory of elastic shells and plates, the Love-Kirchhoff hypothesis being eliminated, Rev. Roum. Sci. Techn-Mec. Appl. 15, 1263–1284 (1970)

V. Biricikoglu and A. Kalnins, Large elastic deformation of shells with the inclusion of transverse normal strain, Int. J. Solids Structures 7, 431–444 (1971)

Y. Yokoo and H. Matsunaga, A general nonlinear theory of elastic solids, Internat. J. Solids and Structures 10, 261–272 (1974)

L. M. Habip and I. K. Ebcioglu, On the equations of motion of shells in the reference state, Ing. Archiv. 34 (1965)

L. Ia. Ainola, Nonlinear Timoshenko type theory of elastic shells (in Russian), Izv. Akad. Nauk. Eston. SSR, 14, 337–344 (1965)

K. Z. Galimov, The theory of shells with transverse shear effect (in Russian), Kazan Univ., 1977

K. Z. Galimov, The bases of the nonlinear theory of thin shells, (in Russian), Kazan Univ., 1975

I. Oshima, Y. Seguchi and A. Shindo, On nonlinear shell theories, Bull. of the J.S.M.E. 13, 1155–1164 (1970)

I. K. Ebcioglu, Non-linear theory of shells, Internat. J. Non-linear Mech. 6, 469–478 (1970)

C. I. Wu and J. Vinson, Influences of large amplitudes, transverse shear deformation and rotatory inertia on lateral vibrations of transversely istropic plates, J. Appl. Mech. 36, 254–260 (1969)

K. Summo, Nonlinear theory of thin elastic shells based on Kirchhoff hypothesis, Recent Researches of Structural Mechanics, Uno Shoten, Tokyo, 231–244, 1968

T. Nakamura, Foundation of geometrically nonlinear theory of the continuum based on Kirchhoff-Love assumptions, Report of the Institute of Industrial Science, Univ. of Tokyo, 20, 1–49 (1971)

R. Harnach and W. B. Kratzig, Allgemeine Theorie geometrish nichtlinearer insbesondere leighter Flachentragwerke, Mitteilung Nr. 73–6, April, Inst, für Konstruktiven Ingenieurbau, Ruhr-Univ. Bochum, 1976

Koiter, W. T., 1966, On the nonlinear theory of thin elastic shells. I, II, III, Nederl. Akad. Wetensch. Proc. Ser. B, 69, 1

Sanders, J. Lyell, Jr., 1963, Nonlinear theories for thin shells, Quart. Appl. Math., 21, 21, 10.1090/qam/147023

J. G. Wempner, Mechanics of solids with applications to thin bodies, McGraw-Hill, 1973

R. G. Jeffers and M. A. Brull, A large deflection theory for thin elastic shells, Israel J. Tech. 13, 111–121 (1975); Proc. XVII Isr. Annu. Conf. Aviation and Astronautics, May 1975