Refactoring the Monolith Workflow into Independent Micro-Workflows to Support Stream Processing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Talia, D., Workflow systems for science: concepts and tools, ISRN Software Eng., 2013, vol. 2013, no. 3, pp. 1–15. https://doi.org/10.1155/2013/404525
Badia, R.M., Ayguade, E., and Labarta, J., Workflows for science: a challenge when facing the convergence of HPC and big data, Supercomput. Front. Innovations, 2017, vol. 4, no. 1, pp. 27–47. https://doi.org/10.14529/jsfi170102
da Silva, R.F., Pottier, L., Coleman, T., Deelman, E., and Casanova, H., WorkflowHub: community framework for enabling scientific workflow research and development, Proc. IEEE/ACM Workflows in Support of Large-Scale Science (WORKS), Nov. 2020, pp. 49–56. https://doi.org/10.1109/WORKS51914.2020.00012
Radchenko, G. and Hudyakova, E., A service-oriented approach of integration of computer-aided engineering systems in distributed computing environments, Proc. UNICORE Summit 2012, Dresden, 2012, vol. 15, pp. 57–66. http://www.scopus.com/inward/record.url?eid=2-s2.0-84877685818&partnerID=tZOtx3y1
Deelman, E., et al., Pegasus, a workflow management system for science automation, Future Gener. Comput. Syst., 2015, vol. 46, pp. 17–35https://doi.org/10.1016/j.future.2014.10.008
Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., and Mock, S., Kepler: an extensible system for design and execution of scientific workflows, Proc. 16th Int. Conf. on Scientific and Statistical Database Management, Santorini, 2004, pp. 423–424. https://doi.org/10.1109/SSDM.2004.1311241
Fahringer, T., Prodan, R., Rubing Duan, R., Nerieri, F., Podlipnig, S., Jun Qin, J., Siddiqui, M., Hong-Linh Truong, H.-L., Villazon, A., and Wieczorek, M., ASKALON: a grid application development and computing environment, Proc. 6th IEEE/ACM Int. Workshop on Grid Computing, Seattle, 2005, p. 10. https://doi.org/10.1109/GRID.2005.1542733
Hirales-Carbajal, A., Tchernykh, A., Roblitz, T., and Yahyapour, R., A grid simulation framework to study advance scheduling strategies for complex workflow applications, Proc. IEEE Int. Symp. on Parallel & Distributed Processing, Workshops, and Phd Forum (IPDPSW), Atlanta, Apr. 2010, pp. 1–8. https://doi.org/10.1109/IPDPSW.2010.5470918
Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., González-García, J.L., Röblitz, T., and Ramírez-Alcaraz, J.M., Multiple workflow scheduling strategies with user run time estimates on a grid, J.Grid Comp., 2012, vol. 10, no. 2, pp. 325–346. https://doi.org/10.1007/s10723-012-9215-6
Zhao, Y., Li, Y., Tian, W., and Xue, R., Scientific-workflow-management-as-a-service in the cloud, Proc. 2nd Int. Conf. on Cloud and Green Computing and 2nd Int. Conf. on Social Computing and Its Applications, CGC/SCA 2012, Xiangtan, 2012, pp. 97–104. https://doi.org/10.1109/CGC.2012.70
Zheng, C., Tovar, B., and Thain, D., Deploying high throughput scientific workflows on container schedulers with makeflow and mesos, Proc. 17th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, CCGRID 2017, Madrid, 2017, no. 2, pp. 130–139. https://doi.org/10.1109/CCGRID.2017.9
Newman, S., Building Microservices: Designing Fine-Grained System, O’Reilly Media, 2015.
Lewis, J. and Fowler, M., Microservices, 2014. https://martinfowler.com/articles/microservices.html. Accessed Jan. 11, 2019.
Shahir Daya Nguyen Van Duy, R.V., Eati, K., Ferreira, C.M., Glozic, D., Gucer, V., Gupta, M., Joshi, S., Lampkin, V., Martins, M., and Narain, S., Microservices from theory to practice creating applications in IBM bluemix using the microservices approach, Microservices from Theory to Practice: Creating Applications in IBM Bluemix Using the Microservices Approach, Vervante, 2015, p. 170.
97 Things Every Programmer Should Know: Collective Wisdom from the Experts, Henney, K., Ed., 1st ed., O’Reilly Media, 2010.
Chen, W. and Deelman, E., Integration of workflow partitioning and resource provisioning, Proc. 12th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa, 2012, pp. 764–768. https://doi.org/10.1109/CCGrid.2012.57
Lin, S. and Kernighan, B.W., An efficient heuristic procedure for partitioning graphs, Bell Syst. Tech. J., 1972, vol. 49, no. 2, pp. 291–307. papers2://publication/uuid/DD764D51-EFBA-418B-8480-79264A894331.
Moreira, O., Popp, M., and Schulz, C., Graph partitioning with acyclicity constraints, Leibniz Int. Proc. Inf., LIPIcs, 2017, vol. 75, pp. 1–14. https://doi.org/10.4230/LIPIcs.SEA.2017.30
Zinn, D., Hart, Q., McPhillips, T., Ludäscher, B., Simmhan, Y., Giakkoupis, M., and Prasanna, V.K., Towards reliable, performant workflows for streaming-applications on cloud platforms, Proc. 11th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, Newport Beach, CA, May 2011, pp. 235–244. https://doi.org/10.1109/CCGrid.2011.74
Freitag, A., Matthes, F., and Schulz, C., A method for business capability dependency analysis, Proc. 2nd Int. Conf. on Innovative Developments in ICT, Sofia, 2011, pp. 11–20. https://doi.org/10.5220/0004471100110020
Mazzara, M., Bucchiarone, A., Dragoni, N., and Rivera, V., Size matters: microservices research and applications, in Microservices, Cham: Springer Int. Publ., 2020, pp. 29–42.
Evans, E., Domain-Driven Design: Tackling Complexity in the Heart of Software, Addison-Wesley, 2003.
Alaasam, A.B.A., Radchenko, G., and Tchernykh, A., Micro-workflows: a combination of workflows and data streaming to support digital twins of production processes, Bull. South Ural State Univ. Ser. Comput. Math. Software Eng., 2019, vol. 8, no. 4, pp. 100–116. https://doi.org/10.14529/cmse190407
Alaasam, A.B.A., Radchenko, G., Tchernykh, A., Borodulin, K., and Podkorytov, A., Scientific micro-workflows: where event-driven approach meets workflows to support digital twins, Proc. Int. Conf. RuSCDays’18–Russian Supercomputing Days (Sept. 24–25, 2018, Moscow, Russia), Moscow: MSU, 2018, vol. 1, pp. 489–495.
Alaasam, A.B.A., Radchenko, G.I., and Tchernykh, A.N., Micro-workflows data stream processing model for industrial internet of things, Supercomput. Front. Innovations, 2021, vol. 8, no. 1, pp. 82–98. https://doi.org/10.14529/jsfi210106