Reequilibrium kinetics of NiO-Cr2O3 solid solutions

Springer Science and Business Media LLC - Tập 14 - Trang 437-448 - 1980
J. Nowotny1, J. Obłakowski2, A. Sadowski3, J. B. Wagner4
1Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
2Institute of Material Science, Academy of Mining and Metallurgy, Kraków, Poland
3Institute of Metallurgy, Academy of Mining and Metallurgy, Kraków, Poland
4Center for Solid State Science, Arizona State University, Tempe

Tóm tắt

Electrical conductivity has been measured to monitor the reequilibration kinetics for single crystals of NiO-Cr2O3 solid solutions. It has been found that the rate for the reduction process is higher than that for the oxidation runs, thus indicating that the obtained kinetic data are not purely bulk controlled. The following expressions for the apparent chemical diffusion coefficient have been obtained within the temperature range 900–1200°C and oxygen partial pressure range 1–10−5 atm: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpu0de9vqpee9Lq% pepeea0xd9q8as0-LqLs-lirpepeea0-as0Fb9pgea0lrP0xe9Fve9% Fve9qapdbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaieaace% WFebGbaGaadaWgaaWcbaacbiGaa4xmaiaa+bcacaWGYbGaamyzaiaa% dsgaaeqaaOGaeyypa0tefeKCPfgBaGqbciaa9fdacaqFUaGaa0Nmai% aa9jdacaqFxdGaa0xmaiaa9bdadaahaaWcbeqaaiaa91cacaqFYaaa% aOGaa4hiaiaa+vgacaGF4bGaa4hCaiaa+bcadaqadaqaamaalaaaba% Gaa0Nmaiaa9rdacaqFSaGaa0hnaiaa9jdacaqFWaGaa0xSaiaa9fda% caqFYaGaa0xmaiaa9bdacaGFGaGaam4yaiaadggacaWGSbGaai4lai% aad2gacaWGVbGaamiBaiaadwgacqGHflY1cqGHWcaScaWGlbaabaGa% a8Nuaiaa-rfaaaaacaGLOaGaayzkaaaabaGab8hrayaaiaWaa0baaS% qaaiaa+fdacaGFGaGaam4BaiaadIhacaWGPbGaamizaaqaaiaacQca% aaGccqGH9aqpcaqFXaGaa0Nlaiaa9rdacaqF0aGaa031aiaa9fdaca% qFWaWaaWbaaSqabeaacaqFTaGaa0Nmaaaakiaa+bcacaGFLbGaa4hE% aiaa+bhacaGFGaWaaeWaaeaadaWcaaqaaiaa9jdacaqF3aGaa0hlai% aa9ndacaqF0aGaa0hmaGqbaiaa8flacaqF3aGaa0hmaiaa9bdacaGF% GaGaam4yaiaadggacaWGSbGaai4laiaad2gacaWGVbGaamiBaiaadw% gacqGHflY1cqGHWcaScaWGlbaabaGaa8Nuaiaa-rfaaaaacaGLOaGa% ayzkaaaabaGab8hrayaaiaWaaSbaaSqaaiaa+jdacaGFGaGaa4NCai% aa+vgacaGFKbaabeaakiabg2da9iaaikdacaqFUaGaa0Nmaiaa9Lda% caqFxdGaa0xmaiaa9bdadaahaaWcbeqaaiaa91cacaqFYaaaaOGaa4% hiaiaa+vgacaGF4bGaa4hCaiaa+bcadaqadaqaamaalaaabaGaa0Nm% aiaa9vdacaqFSaGaa03maiaa9rdacaqFWaGaaWxSaiaa9jdacaqFYa% Gaa03maiaa9bdacaGFGaGaam4yaiaadggacaWGSbGaamyBaiaad+ga% caWGSbGaamyzaiabgwSixlabgclaWkaadUeaaeaacaWFsbGaa8hvaa% aaaiaawIcacaGLPaaaaeaaceWFebGbaGaadaqhaaWcbaGaa4Nmaiaa% +bcacaWGVbGaamiEaiaadMgacaWGKbaabaGaaiOkaaaakiabg2da9i% aa9bdacaqFUaGaa0xmaiaa9bdacaqF5aGaa4hiaiaa+vgacaGF4bGa% a4hCaiaa+bcadaqadaqaamaalaaabaGaa0Nmaiaa9LdacaqFSaGaa0% Nnaiaa9fdacaqFWaGaaWxSaiaa9ndacaqFYaGaa0hmaiaa9bdacaGF% GaGaam4yaiaadggacaWGSbGaai4laiaad2gacaWGVbGaamiBaiaadw% gacqGHflY1cqGHWcaScaWGlbaabaGaa8Nuaiaa-rfaaaaacaGLOaGa% ayzkaaaabaGab8hrayaaiaWaaSbaaSqaaiaa+ndacaGFGaGaa4NCai% aa+vgacaGFKbaabeaakiabg2da9iaa9ndacaqFUaGaa0xmaiaa9zda% caqFxdGaa0xmaiaa9bdadaahaaWcbeqaaiaa91cacaqFYaaaaOGaa4% hiaiaa+vgacaGF4bGaa4hCaiaa+bcadaqadaqaamaalaaabaGaa0Nm% aiaa9zdacaqFSaGaa0hmaiaa9jdacaqFWaGaaWxSaiaa9jdacaqF0a% Gaa03maiaa9bdacaGFGaGaam4yaiaadggacaWGSbGaai4laiaad2ga% caWGVbGaamiBaiaadwgacqGHflY1cqGHWcaScaWGlbaabaGaa8Nuai% aa-rfaaaaacaGLOaGaayzkaaaabaGab8hrayaaiaWaa0baaSqaaiaa% +ndacaGFGaGaam4BaiaadIhacaWGPbGaamizaaqaaiaacQcaaaGccq% GH9aqpcaqFWaGaa0Nlaiaa9jdacaqFWaGaa0Nmaiaa9bcacaGFLbGa% a4hEaiaa+bhacaGFGaWaaeWaaeaadaWcaaqaaiaa9ndacaqFXaGaa0% hlaiaa9vdacaqFWaGaa0hmaiaa8flacaqFYaGaa0Nnaiaa9rdacaqF% WaGaa0hiaiaadogacaWGHbGaamiBaiaac+cacaWGTbGaam4BaiaadY% gacaWGLbGaeyyXICTaeyiSaaRaam4saaqaaiaa-jfacaWFubaaaaGa% ayjkaiaawMcaaaaaaa!2EB3! $$\begin{gathered} \tilde D_{1 red} = 1.22 \times 10^{ - 2} exp \left( {\frac{{24,420 \pm 1210 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{1 oxid}^* = 1.44 \times 10^{ - 2} exp \left( {\frac{{27,340 \pm 700 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{2 red} = 2.29 \times 10^{ - 2} exp \left( {\frac{{25,340 \pm 2230 calmole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{2 oxid}^* = 0.109 exp \left( {\frac{{29,610 \pm 3200 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{3 red} = 3.16 \times 10^{ - 2} exp \left( {\frac{{26,020 \pm 2430 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \tilde D_{3 oxid}^* = 0.202 exp \left( {\frac{{31,500 \pm 2640 cal/mole \cdot ^\circ K}}{{RT}}} \right) \hfill \\ \end{gathered} $$ .

Tài liệu tham khảo

J. B. Wagner, Jr.,Proceedings of the Symposium on Mass Transport in Oxides, NBS Special Publication (1968), pp. 65–76.

P. E. Childs and J. B. Wagner, Jr.,Proceedings of the International Conference on Heterogeneous Kinetics at Elevated Temperature, Philadelphia 1969 (Plenum, New York, 1970), pp. 269–342.

P. E. Childs, D. W. Laub, and J. B. Wagner, Jr.,Proc. Br. Ceram. Soc. 19, 29 (1971).

J. Nowotny and J. B. Wagner, Jr.,J. Am. Ceram. Soc. 56, 397 (1973).

J. M. Wimmer, R. N. Blumenthal, and J. Bransky,J. Phys. Chem. Solids 36, 269 (1975).

J. Dereń, Z. M. Jarzebski, S. Mrowec, and T. Walec,Bull. Acad. Pol. Sci., Ser. Sci. Chim. 19, 153 (1971).

J. B. Price and J. B. Wagner, Jr.,Z. Phys. Chem., Neue Folge 49, 257 (1966).

J. Notwotny and A. Sadowski,J. Am. Ceram. Soc. in press.

R. Farhi and G. Petot-Ervas,J. Phys. Chem. Solids 39, 1169 (1978).

J. B. Price, Ph.D. thesis, Northwestern University, Evanston, Ill. (1968).

L. W. Laub, Ph.D. thesis, Northwestern University, Evanston, Ill. (1971).

J. Nowotny and J. B. Wagner, Jr., unpublished data.

A. V. Krilova, L. Ya. Margolis, G. I. Tschizhikova,Kinet. Katal. 6, 854 (1965).

J. Dereń, J. Nowotny, and J. Ziółkowski,Bull. Acad. Pol. Sci., Ser. Sci. Chim. 16, 45 (1968).

A. Bielański and J. Dereń,Proceedings of the International Symposium on Electronic Phenomena in Adsorption and Catalysis on Semiconductors Volkenstein, ed. (Mir, Moscow, 1969), pp. 227–251.

J. Dereń, J. Nowotny, G. Rog, B. Russer, and J. Sloczynski,J. Catal. 34, 124 (1974).

S. P. Mitoff,J. Chem. Phys. 35, 882 (1961).

H. G. Sockel and B. Ilschner,Z. Phys. Chem., Neue Folge 74, 284 (1971).

G. H. Meier and R. A. Rapp,Z. Phys. Chem., Neue Folge 74, 168 (1971).

C. M. Osburn and R. W. Vest,J. Phys. Chem. Solids 32, 1331 (1970).

S. Pizzini and R. Morlotti,J. Electrochem. Soc. 114, 1179 (1967).

J. E. Stroud and J. Bransky,J. Chem. Phys. 58, 1263 (1973).

M. Parlinska, Ph.D. thesis, Academy of Mining and Metallurgy, Kraköw (1977).

R. A. Perkins and R. A. Rapp,Trans. Metall. Soc. A.I.M.E. 4, 193 (1973).

R. Farhi and G. Petot-Ervas,J. Phys. Chem. Solids 39, 1175 (1978).

H. J. Grabke,Ann. N.Y. Acad. Sci. 213, 110 (1973).

J. Nowotny and J. B. Wagner, Jr., submitted for publication.

A. Sadowski, PhD. thesis, Academy of Mining and Metallurgy, Kraków (1978).

J. Nowotny, J. Oblakowski, A. Sadowski, and J. B. Wagner, Jr., submitted for publication.