Reduction of soil heavy metal bioavailability by nanoparticles and cellulosic wastes improved the biomass of tree seedlings

Journal of Plant Nutrition and Soil Science - Tập 180 Số 6 - Trang 683-693 - 2017
Mahya Tafazoli1, Seyed Mohammad Hojjati1, Pourya Biparva2, Yahya Kooch3, Norbert Lamersdorf4
1Sari Agricultural Sciences and Natural Resources University, Department of Forestry, 481816898 Sari, Iran
2Sari Agricultural Sciences and Natural Resources University, Department of Basic Sciences, 4818168984 Sari, Iran
3Tarbiat Modares University, Department of forestry, 4641776489 Noor, Iran
4University of Göttingen Department of Temperate Soil Science Institute of Soil Science 37077 Göttingen Germany

Tóm tắt

Abstract

The purpose of this study was to use zero‐valent iron nanoparticles (nZVI) and cellulosic wastes to reduce bioavailability of lead (Pb) and cadmium (Cd), and to establish Persian maple seedlings (Acer velutinum Bioss.) in contaminated soil. One‐year‐old seedlings were planted in pots filled with unpolluted soil. Lead [Pb(NO3)2] and Cd [Cd(NO3)2] were added with concentrations of 0 (Control), 100 (Pb100), 200 (Pb200), and 300 (Pb300) mg kg−1 and 10 (Cd10), 20 (Cd20), and 30 (Cd30) mg kg−1. Cellulosic wastes were mixed with soil at the same time of planting [four levels: 0, 10 (W1), 20 (W2), 30 (W3) g 100 g−1 soil]. The nZVI was prepared by reducing Fe3+ to Fe0 and injected to pots [four levels: 0, 1 (N1), 2 (N2), and 3 (N3) mg kg−1]. Height, diameter, biomass, tolerance index of seedlings, bioavailability of heavy metals in soil, and removal efficiency of amendments were measured. The highest values of seedling characteristics were observed in N3. The highest removal efficiency of Pb (Pb100: 81.95%, Pb200: 75.5%, Pb300: 69.9%) and Cd (Cd10: 92%, Cd20: 73.7%, Cd30: 68.5%) was also observed in N3. The use of nZVI and cellulosic waste could be a proper approach for seedling establishment in forests contaminated with heavy metals.

Từ khóa


Tài liệu tham khảo

10.2134/jeq2001.302608x

10.1016/j.geoderma.2004.01.003

10.1002/clen.201000461

10.1016/j.sjbs.2014.12.003

Anonymus(2015): Statistics of Synoptic Stations. Meteorological Organization of Mazandaran Province Ramsar Iran (in Persian).

10.1007/s10811-016-0997-y

10.1051/agro:2008057

10.1590/S1677-04202005000100003

10.1016/j.jhazmat.2010.11.029

10.1007/s11356-013-1651-8

10.1016/j.envexpbot.2007.03.001

Bouajila K., 2011, Effects of organic amendments on soil physico‐chemical and biological properties, J. Mater. Environ. Sci., 2, 485

Bradshaw A. D., 1980, The Restoration of Land: The Ecology and Reclamation of Derelict and Degraded Land

10.1016/j.jaridenv.2005.01.007

10.1016/j.envpol.2004.05.019

10.1016/S0269-7491(03)00208-2

Chaney R. L., 1994, Risk Based Standards for Arsenic, Lead and Cadmium in Urban Soils

10.1080/10934520902784609

10.1016/S0048-9697(01)00800-2

10.1023/A:1024288505979

10.1016/S0167-7799(00)88987-8

10.1111/j.1744-7909.2008.00737.x

10.1016/S0098-8472(98)00058-6

Ernst W. H. O., 1998, Ecotoxicology—Ecological Fundamentals, Chemical Exposure and Biological Effects, 587

10.1007/s11164-012-0975-1

Ghafariyan M. H., 2013, Effects of magnetite nanoparticles on soybean chlorophyll, Environ. Sci. Technol., 47, 10645

10.1021/es048743y

10.1002/rem.20081

Houben D. Sonnet P.(2010): Leaching and phytoavailability of zinc and cadmium in a contaminated soil treated with zero‐valent iron. Proceedings of the 19thWorld Congress of Soil Science Soil Solutions for a Changing World August 01–06 2010 Brisbane Australia.

Jamode A. V., 2003, Applications of the inexpensive adsorbents for the removal of heavy metals from industrial wastewater: a brief review, J. Ind. Pollut. Contr., 19, 114

10.1016/j.chemosphere.2007.06.070

Kabata‐Pendias A., 2010, Trace Elements in Soil and Plants, 10.1201/b10158

10.1016/S0167-1987(99)00077-X

10.1021/es0520924

10.1016/j.ecoleng.2016.03.012

10.1078/1439-1791-00105

10.1021/es503154q

10.1016/j.geoderma.2008.09.020

10.1078/0176-1617-00504

10.1039/C3EM00578J

Li X., 2007, Zero‐valent iron (ZVI) nanoparticles: The core‐shell structure and surface chemistry

10.1080/10408430601057611

10.1061/(ASCE)0733-9372(1999)125:11(1042)

10.1088/1468‐6996/9/2/025015

10.5539/jsd.v6n12p44

10.1155/2012/461468

10.1016/0269-7491(94)90002-7

10.1016/j.scitotenv.2008.02.004

10.1021/la900228d

10.1007/s11270‐015‐2738‐2

10.1021/es049835q

10.1002/rem.20079

10.1007/978-94-011-4473-5

Mohapatra H., 2012, Impact of coal mining on soil characteristics around Ib river coalfield, Orissa, India, J. Env. Biol., 33, 751

Nasiri J., 2013, Removal of cadmium from soil resources using stabilized zero‐valent iron nanoparticles, J. Civil. Eng. Urban., 3, 338

10.1021/es049190u

10.1016/j.advwatres.2012.02.005

10.1039/c1em10275c

10.1016/j.envpol.2006.06.016

10.1021/es061349a

Puschenreiter M., 2005, Low‐cost agricultural measures to reduce heavy metal transfer into the food chain—a review, Plant Soil Environ., 51, 1, 10.17221/3549-PSE

10.1007/s002160050222

10.1021/es0490018

10.1016/j.watres.2005.07.040

10.1016/S0960-8524(03)00206-2

10.1016/j.envres.2009.08.008

10.3923/ajps.2003.237.241

10.1016/j.jiec.2014.06.014

10.1023/A:1016719901147

Smolders E., 1995, Heavy Metals in Soils, 283

Stewart B. A., 2000, Land Application of Agricultural, Industrial, and Municipal By‐Products, 387

Stumm W., 1996, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters

10.1016/j.jhazmat.2005.08.026

10.1080/10408410701710442

10.1016/j.apgeochem.2016.02.009

10.1016/j.chemosphere.2004.05.020

10.1007/s11356-011-0509-1

10.1080/01904160902943189

10.1007/978-94-009-8099-0_6

10.1016/S0045-6535(02)00232-1

10.1039/c0cc02311f