Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens
Tài liệu tham khảo
Weber, 2005, Anaerobic redox cycling of iron by freshwater sediment microorganisms, Environ. Microbiol., 8, 100, 10.1111/j.1462-2920.2005.00873.x
Blöthe, 2009, Microbial iron redox cycling in a circumneutral-pH groundwater seep, Appl. Environ. Microbiol., 75, 468, 10.1128/AEM.01817-08
Simon, 2008, The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems, Biochim. Biophys. Acta, 1777, 1480, 10.1016/j.bbabio.2008.09.008
Salas, 2011, The impact of bacterial strain on the products of dissimilatory iron reduction, Geochim. Cosmochim. Acta, 74, 574, 10.1016/j.gca.2009.10.039
Majzlan, 2012, Minerals and aqueous species of iron and manganese as reactants and products of microbial metal respiration, 112
Zhu, 2014, Microbial community composition is unaffected by anode potential, Environ. Sci. Technol., 1352, 10.1021/es404690q
Commault, 2013, Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells, Bioresour. Technol., 139, 226, 10.1016/j.biortech.2013.04.047
Ishii, 1841, A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer, Nat. Commun., 4, 1601, 10.1038/ncomms2615
Rimboud, 2015, Multi-system Nernst–Michaelis–Menten model applied to bioanodes formed from sewage sludge, Bioresour. Technol., 195, 192-169, 10.1016/j.biortech.2015.05.069
Strycharz, 2011, Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400, Energy Environ. Sci., 4, 896, 10.1039/C0EE00260G
Richter, 2009, Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer, Energy Environ. Sci., 2, 506, 10.1039/b816647a
Yoho, 2014, Dynamic potential-dependent electron transport pathway shifts in anode biofilms of Geobacter sulfurreducens, ChemSusChem, 3413, 10.1002/cssc.201402589
Levar, 2014, An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors, MBio, 5, 1, 10.1128/mBio.02034-14
Butler, 2010, Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes, BMC Genomics, 11, 40, 10.1186/1471-2164-11-40
Aklujkar, 2013, Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens, Microbiology, 159, 515, 10.1099/mic.0.064089-0
Ding, 2008, Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor, Biochim. Biophys. Acta, 1784, 1935, 10.1016/j.bbapap.2008.06.011
Shrestha, 2013, Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange, Environ. Microbiol. Rep., 5, 904, 10.1111/1758-2229.12093
Ishii, 2014, Microbial population and functional dynamics associated with surface potential and carbon metabolism, ISME J., 8, 963, 10.1038/ismej.2013.217
Marsili, 2008, Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms, Appl. Environ. Microbiol., 74, 7329, 10.1128/AEM.00177-08
Lovley, 1986, Organic matter mineralization with reduction of ferric Iron in anaerobic sediments organic matter mineralization with reduction of ferric iron in anaerobic sediments, Appl. Environ. Microbiol., 51, 683, 10.1128/AEM.51.4.683-689.1986
Schafer, 1994, Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutumicum, Gene, 145, 69, 10.1016/0378-1119(94)90324-7
Simon, 1983, A broad host range mobilization system for in vivo genetic engineering: transposon mutagensis in gram negative bacteria, Biotechnology, 1, 784, 10.1038/nbt1183-784
Fleige, 2006, RNA integrity and the effect on the real-time qRT-PCR performance, Mol. Aspects Med., 27, 126, 10.1016/j.mam.2005.12.003
Jormakka, 2002, Molecular basis of proton motive force generation: structure of formate dehydrogenase-N, Science, 295, 1863, 10.1126/science.1068186
Qiu, 2010, Structural and operational complexity of the Geobacter sulfurreducens genome, Genome Res., 20, 1304, 10.1101/gr.107540.110
Straub, 1998, The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria, Syst. Appl. Microbiol., 21, 442, 10.1016/S0723-2020(98)80054-4
Straub, 2004, Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria, Arch. Microbiol., 182, 175, 10.1007/s00203-004-0686-0
Virdis, 2014, Real-time measurements of the redox states of c-type cytochromes in electroactive biofilms: a confocal resonance raman microscopy study, PLoS One, 9, e89918, 10.1371/journal.pone.0089918
Virdis, 2012, Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy, Energy Environ. Sci., 5, 7017, 10.1039/c2ee03374g
Snider, 2012, Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven, Proc. Natl. Acad. Sci. U. S. A., 109, 15467, 10.1073/pnas.1209829109
Torres, 2008, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872, 10.1002/bit.21821
Hamelers, 2011, Butler–Volmer–Monod model for describing bio-anode polarization curves, Bioresour. Technol., 102, 381, 10.1016/j.biortech.2010.06.156
Merkley, 2014, Changes in protein expression across laboratory and field experiments in Geobacter bemidjiensis, J. Proteome Res., 1361
Rose, 2015, Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide–adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation, Bioelectrochemistry, 106, 213, 10.1016/j.bioelechem.2015.03.003