Reduction of effective material loss (EML) using decagonal photonic crystal fiber (D-PCF) for communication applications in the terahertz wave pulse

Md. Selim Hossain1, Shuvo Sen2, Md. Mahabub Hossain3
1Daffodil International University
2Department of Information and Communication Technology (ICT), Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, Bangladesh
3Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., et al.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl Opt 56(12), 3477–3483 (2017a). https://doi.org/10.1364/AO.56.003477

Ahmed, K., Islam, M., Sen, S., Paul, B.K., Chowdhury, S., Hasan, M., Uddin, M.S., Asaduzzaman, S., Bahar, A.N.: Low-loss single mode terahertz microstructure fiber with near-zero-flattened dispersion. Adv. Sci. Eng. Med. 9(10), 829–836 (2017b)

Amiri, I.S., Paul, B.K., Ahmed, K., Aly, A.H., Zakaria, R., Yupapin, P., Vigneswaran, D.: Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw. Opt. Technol. Lett. (2018)

Bao, H., Nielsen, K., Rasmussen, H.K., Jepsen, P.U., Bang, O.: Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20(28), 29507–29517 (2012)

Bulbul, A.A.-M., Imam, F., Awal, Md. A., Mahmud, M.A.P.: A novel ultra-low loss rectangle-based porous-core pcf for efficient THz Waveguidance. Des. Numer. Anal.. Sens. 20(22), 6500 (2020)

Bowden, B., Harrington, J.A., Mitrofanov, O.: Silver/polystyrenecoated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32(20), 2945–2947 (2007)

Chen, L., Chen, H., Kao, T., Lu, J., Sun, C.: Low-loss subwavelength plastic fiber for terahertz wave guiding. Opt. Lett. 31(3), 308–310 (2006)

Dash, J.N., Jha, R.: Graphene-based birefringent photonic crystal fber sensor using surface plasmon resonance. IEEE Photon. Technol. Lett. 26(11), 1092–1095 (2014)

El Hamzaoui, H., Ouerdane, Y., Bigot, L., Bouwmans, G., Capoen, B., Boukenter, A., Girard, S., Bouazaoui, M.: Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express 20(28), 29751–29760 (2012)

Hasan, M.R., Islam, M.A., Rifat, A.A.: A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J Eur Opt Soc-Rap Pub 12(1), 15 (2016)

Hasan, M.R., Akter, S., Khatun, T., Rifat, A.A., Anower, M.S.: Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56(4), 043108 (2017)

Hasanuzzaman, G.K.M., Habib, M.S., Razzak, S.A., Hossain, M.A., Namihira, Y.: Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J Light Tech 33(19), 4027–4031 (2015)

Hassani, A., Dupuis, A., Skorobogatiy, M.: Porous polymer fibers for low-loss terahertz guiding. Opt. Express 16(9), 6340–6351 (2008)

Hossain, M.S., Sen, S., Hossain, M.M.: Performance analysis of octagonal photonic crystal fiber (O-PCF) for various communication applications. Phys Scr. 96(5), 55506 (2021a). https://doi.org/10.1088/1402-4896/abe323

Hossain, M.S., Hasan, M.M., Sen, S., Mollah, M.S.H., Azad, M.M.: Simulation and analysis of ultra-low material loss of single-mode photonic crystal fiber in terahertz (THz) spectrum for communication applications. J. Opt. Commun., 4873 (2021b). Doi: https://doi.org/10.1515/joc-2020-0224.

Hossain, M.S., Sikder, A.S., Sen, S., et al.: Design and numerical analysis of Zeonex-based photonic crystal fiber for application in different types of communication networks. J Comput Electron (2021c). https://doi.org/10.1007/s10825-021-01704-9

Hossain, M.S., Hussain, N. Hossain, Z., Zaman, M.S., Hasan Rangon, M.N., Abdullah-Al-Shafi, M., Sen, S., Azad, M.M.: Performance analysis of alcohols sensing with optical sensor procedure using circular photonic crystal fiber (C-PCF) in the terahertz regime. Sens. Bio Sens. Res. 35, 100469. ISSN 2214–1804 (2022). https://doi.org/10.1016/j.sbsr.2021.100469

Islam, S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun., 10(16), 2179–2183, (2016a).

Islam, M.S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fibre for ultra-low material loss in THz regime. IET Com 10(16), 2179–2183 (2016b)

Islam, R., Habib, M.S., Hasanuzzaman, G.K.M., Rana, S., Sadath, M.A., Markos, C.: A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photon Technol Lett 28(14), 1537–1540 (2016c)

Islam, M.I., Ahmed, K., Asaduzzaman, S., Paul, B.K., Bhuiyan, T., Sen, S., Islam, M.S., Chowdhury, S.: Design of single mode spiral photonic crystal fiber for gas sensing applications. Sens. Bio Sens. Res., 13, 55–62, (2017a).

Islam, M.I., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Asaduzzaman, S.: Design and optimization of photonic crystal fiber-based sensor for gas condensate and air pollution monitoring. Photonic Sens 7(3), 234–245 (2017b)

Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 34, 6–11 (2017c). https://doi.org/10.1016/j.yofte.2016.11.014

Islam, M.S., Sultana, J., Atai, J., Abbott, D., Rana, S., Islam, M.R.: Ultra lowloss hybrid core porous fiber for broadband applications. Appl. Opt. 56(9), 1232–1237 (2017d)

Jeon, T.I., Zhang, J., Grischkowsky, D : THz Somerfeld wave propagation on a single metal wire. Applied Phys. Lett., 86(16), 161904, (2005)

Jiang, X., Joly, N.Y., Finger, M.A., Babic, F., Wong, G.K., Travers, J.C., Russell, P.S.J.: Deep-ultraviolet to mid-infrared super continuum generated in solidcore ZBLAN photonic crystal fiber. Nat. Photonics 9(2), 133–139 (2015)

Luo, J., Tian, F., Qu, H., Li, L., Zhang, J., Yang, X., Yuan, L.: Design and numerical analysis of a THz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence. Appl. Opt. 56, 6993–7001 (2017). https://doi.org/10.1364/AO.56.006993

Md. Selim Hossain, M.M. Kamruzzaman, S.S., Azad, M.M., Mollah, M.S.H.: Hexahedron core with sensor based photonic crystal fiber: An approach of design and performance analysis. Sens. Bio Sens. Res (2021). Doi: https://doi.org/10.1016/j.sbsr.2021.100426

Nagel, M., Bolivar, P.H., Brucherseifer, M., Kurz, H., Bosserhoff, A., Büttner, R.: Integrated THz technology for label-free geneticdiagnostics. Appl. Phys. Lett. 80(1), 154–156 (2002)

Nielsen, K., Rasmussen, H.K., Adam, A.J., Planken, P.C., Bang, O., Jepsen, P.U.: Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2009)

Paul, B.K., Haque, M., Ahmed, K., Sen, S.: A novel hexahedron photonic crystal fiber in terahertz propagation: design and analysis. Photon. 6, 32–38 (2019a)

Paul, B.K., Bhuiyan, T., Abdulrazak, L.F., Sarker, K., Hassan, M.M., Shariful, S., Ahmed, K.: extremely low loss optical waveguide for terahertz pulse guidance. Res. Phys. 15, 102666 (2019b)

Paul, B.K., Ahmed, K.: Analysis of terahertz waveguide properties of Q-PCF based on FEM scheme. Opt Mater 100, 109634 (2020)

Pinto, D., Obayya, S.S.A.: Improved complex envelope alternative direction implicit finite difference time domain method for photonic bandgap cavities. IEEE J. Lightwave Technol. 25(1), 440–447 (2007)

Ponseca, C.S., Jr., Pobre, R., Estacio, E., Sarukura, N., Argyros, A., Large, M.C., van Eijkelenborg, M.A.: Transmission of terahertz radiation using a microstructured polymer optical fiber. Opt. Lett. 33(9), 902–904 (2008)

Rana S., Hasanuzzaman G.K., Habib S., Kaijage S.F., Islam R.: Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding. Opt. Eng. 53(11):115107–115107. Doi: https://doi.org/10.1117/1.OE.53.11.115107(2014)

Ren, H-Z., Guo, P.,Yang, LF. The numerical calculation on the effective area of photonic crystal fiber using FEM. Adv. Mater. Res 468471, 2417–2422 (2012). Doi: https://doi.org/10.4028/www.scientific.net/amr.468-471.2417.

Skorobogatiy, M., Dupuis, A.: Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90(11), 113514 (2007)

Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: IEEE Photonics Technol. Lett. 25, 331 (2013a)

Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol. Lett. 25(4), 331–334 (2013b)

Vigneswaran, D., Ayyanar, N., Sharma, M., Sumathi, M., Rajan, M., Porsezian, K.: Salinity sensor using photonic crystal fber. Sens. Actuators A Phys. 269, 22–28 (2018)

Wang, K., Mittleman, D.M.: Metal wires for terahertz waveguiding. Nature 432, 376–379 (2004)

Yuan, W., Khan, L., Webb, D.J., K. Kalli, K., Rasmussen, H. K., Stefani, A., Bang O.: Humidity insensitive TOPAS polymer ber Bragg grating sensor. Opt. Express, 19( 20), 19731–19739 (2011)