Reduction formulas for higher order derivations and a hypergeometric identity

Aequationes mathematicae - Tập 95 - Trang 1053-1065 - 2021
Bruce Ebanks1, André E. Kézdy1
1Department of Mathematics, University of Louisville, Louisville, USA

Tóm tắt

A derivation (of order 1) satisfies the reduction formula $$f(x^k) = kx^{k-1}f(x)$$ for any integer k. In this article we find corresponding reduction formulas for derivations of higher order on commutative rings. More precisely, for every derivation f of order n and every positive integer k we find an explicit formula for $$f(x^k)$$ as a linear combination of $$x^{k-1}f(x),x^{k-2}f(x^2), \ldots , x^{k-n}f(x^n)$$ . The proof hinges on the hypergeometric identity $$\begin{aligned} \sum _{k \ge 0} (-1)^k \left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+d+1-k\\ n-j\end{array}}\right) \left( {\begin{array}{c}d+j-k\\ j\end{array}}\right) = \left( {\begin{array}{c}n\\ j\end{array}}\right) \end{aligned}$$ for any positive integer n, nonnegative integer d, and integer j satisfying $$0 \le j \le n$$ . We prove this identity via the WZ-method.

Tài liệu tham khảo

Ebanks, B., Ng, C.T.: Homogeneous tri-additive forms and derivations. Linear Algebra Appl. 435(11), 2731–2755 (2011) Ebanks, B.: Characterizing ring derivations of all orders via functional equations: results and open problems. Aequationes Math. 89(3), 685–718 (2015) Ebanks, B.: Polynomially linked additive functions—II. Aequationes Math. 92(3), 581–597 (2018) Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. A Foundation for Computer Science, 2nd edn. Addison-Wesley, Reading (1994) Gselmann, E., Kiss, G., Vincze, C.: On functional equations characterizing derivations: methods and examples. Results Math. 73(2), paper no. 74 (2018) Halter-Koch, F., Reich, L.: Charakterisierung von Derivationen höherer Ordnung mittels Funktionalgleichungen. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II. 207(1998), 123–131 (1999) Koepf, W.: Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities, 2nd edn. Universitext, Springer, London (2014) Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A=B\). With a Foreword by Donald E. Knuth. With a Separately Available Computer Disk. A K Peters Ltd., Wellesley (1996)