Reduction formulas for higher order derivations and a hypergeometric identity
Tóm tắt
A derivation (of order 1) satisfies the reduction formula
$$f(x^k) = kx^{k-1}f(x)$$
for any integer k. In this article we find corresponding reduction formulas for derivations of higher order on commutative rings. More precisely, for every derivation f of order n and every positive integer k we find an explicit formula for
$$f(x^k)$$
as a linear combination of
$$x^{k-1}f(x),x^{k-2}f(x^2), \ldots , x^{k-n}f(x^n)$$
. The proof hinges on the hypergeometric identity
$$\begin{aligned} \sum _{k \ge 0} (-1)^k \left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+d+1-k\\ n-j\end{array}}\right) \left( {\begin{array}{c}d+j-k\\ j\end{array}}\right) = \left( {\begin{array}{c}n\\ j\end{array}}\right) \end{aligned}$$
for any positive integer n, nonnegative integer d, and integer j satisfying
$$0 \le j \le n$$
. We prove this identity via the WZ-method.
Tài liệu tham khảo
Ebanks, B., Ng, C.T.: Homogeneous tri-additive forms and derivations. Linear Algebra Appl. 435(11), 2731–2755 (2011)
Ebanks, B.: Characterizing ring derivations of all orders via functional equations: results and open problems. Aequationes Math. 89(3), 685–718 (2015)
Ebanks, B.: Polynomially linked additive functions—II. Aequationes Math. 92(3), 581–597 (2018)
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. A Foundation for Computer Science, 2nd edn. Addison-Wesley, Reading (1994)
Gselmann, E., Kiss, G., Vincze, C.: On functional equations characterizing derivations: methods and examples. Results Math. 73(2), paper no. 74 (2018)
Halter-Koch, F., Reich, L.: Charakterisierung von Derivationen höherer Ordnung mittels Funktionalgleichungen. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II. 207(1998), 123–131 (1999)
Koepf, W.: Hypergeometric Summation. An Algorithmic Approach to Summation and Special Function Identities, 2nd edn. Universitext, Springer, London (2014)
Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A=B\). With a Foreword by Donald E. Knuth. With a Separately Available Computer Disk. A K Peters Ltd., Wellesley (1996)