Reducing uncertainty in cancer risk estimation for patients with indeterminate pulmonary nodules using an integrated deep learning model
Tài liệu tham khảo
Siegel, 2019, vol. 69, 7
Siegel, 2021, Cancer statistics, 2021, CA A Cancer J. Clin., 71, 7, 10.3322/caac.21654
Gould, 2015, Recent trends in the identification of incidental pulmonary nodules, Am. J. Respir. Crit. Care Med., 192, 1208, 10.1164/rccm.201505-0990OC
Siegel, 2018
Aberle, 2011, Reduced lung-cancer mortality with low-dose computed tomographic screening, N. Engl. J. Med., 365, 395, 10.1056/NEJMoa1102873
Gould, 2013, Evaluation of Individuals with Pulmonary Nodules: when Is it Lung Cancer? Diagnosis and Management of Lung Cancer, vol. 143, e93S
Paez, 2021, Risk stratification of indeterminate pulmonary nodules, Curr. Opin. Pulm. Med., 27, 240, 10.1097/MCP.0000000000000780
Ost, 2012, Decision making in patients with pulmonary nodules, Am. J. Respir. Crit. Care Med., 185, 363, 10.1164/rccm.201104-0679CI
Gould, 2007, Evaluation of Patients with Pulmonary Nodules: when Is it Lung Cancer?, vol. 132, 108S
Swensen, 1997, The probability of malignancy in solitary pulmonary nodules, Arch. Intern. Med., 157, 849, 10.1001/archinte.1997.00440290031002
Bornhop, 2016, Origin and prediction of free-solution interaction studies performed label-free, Proc. Natl. Acad. Sci. U. S. A., 113, e1595, 10.1073/pnas.1515706113
Kammer, 2021, vol. 204, 1306
Lecun, 2015, vol. 521, 436
He, 2016, Deep residual learning for image recognition, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770
He, 2020, IEEE Trans. Pattern Anal. Mach. Intell., 42, 386, 10.1109/TPAMI.2018.2844175
Ren, 2017, Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell., 39, 1137, 10.1109/TPAMI.2016.2577031
Liao, 2019, Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network, IEEE Transact. Neural Networks Learn. Syst., 1
Ardila, 2019, End-to-end Lung Cancer Screening with Three-Dimensional Deep Learning on Low-Dose Chest Computed Tomography, vol. 25, 954
Setio, 2016, Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks, IEEE Trans. Med. Imag., 35, 1160, 10.1109/TMI.2016.2536809
Dou, 2017, Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection, IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng., 64, 1558
Massion, 2020, Assessing the accuracy of a deep learning method to risk stratify indeterminate pulmonary nodules, Am. J. Respir. Crit. Care Med., 202, 241, 10.1164/rccm.201903-0505OC
Liu, 2018, Mtmr-net: multi-task deep learning with margin ranking loss for lung nodule analysis, MICCAI, 11045, 74
Shen, 2015, Multi-scale convolutional neural networks for lung nodule classification, 9123, 588
Gao, 2020, Multi-path x-D recurrent neural networks for collaborative image classification, Neurocomputing, 397, 48, 10.1016/j.neucom.2020.02.033
Gao, 2020, Time-distanced gates in long short-term memory networks, Med. Image Anal., 65, 101785, 10.1016/j.media.2020.101785
2011, The national lung screening trial: overview and study design, Radiology, 258, 243, 10.1148/radiol.10091808
Gao, 2021
Gao, 2021, Deep multi-path network integrating incomplete biomarker and chest CT data for evaluating lung cancer risk, SPIEL, 46
Tammemägi, 2013, Selection criteria for lung-cancer screening, N. Engl. J. Med., 368, 728, 10.1056/NEJMoa1211776
Ronneberger, 2015, U-net: convolutional networks for biomedical image segmentation, 9351, 234
Ilse, 2018
Fawcett, 2006, An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861, 10.1016/j.patrec.2005.10.010
Paynter, 2013, A bias-corrected net reclassification improvement for clinical subgroups, Med. Decis. Making, 33, 154, 10.1177/0272989X12461856
McWilliams, 2013, Probability of cancer in pulmonary nodules detected on first screening CT, N. Engl. J. Med., 369, 910, 10.1056/NEJMoa1214726
Baldwin, 2015, The British Thoracic Society guidelines on the investigation and management of pulmonary nodules, Thorax, 70, 794, 10.1136/thoraxjnl-2015-207221
Kumari, 2022, Ensembling off-the-shelf models for gan training