Reducing the effect of temperature variations on FOG output signal

E. V. Dranitsyna1, D. A. Egorov1, A. A. Untilov1, G. B. Deĭneka2, I. A. Sharkov2, I. G. Deineka2
1Concern CSRI Elektropribor, St. Petersburg, Russia
2St. Petersburg National Research University of Information Technologies, Mechanics, and Optics, St. Petersburg, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lefevre, H.C., Ultimate-performance fiber-optic gyroscope: a reality. Proc. 16th Opto Electronics and Communications Conf., Kaohsiung, 2011, pp. 75–78.

Lefevre, H.C., The fiber-optic gyroscope: achievement and perspective, Proc. 9th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2012, pp. 122–126.

Lukyanov, D.P., Laser and fiber-optic gyros: state of the art and development prospects, Giroskop. Nav., 1998, no. 4(23), pp. 20–45.

Prilutskii, V.E., et al., Interferometric fiber-optic gyros with linear output, Giroskop. Nav., 2004, no. 3, pp. 62–72.

Kolevatov, A.P., et al., Development of two-mode ahrs based on three-component FOG, Giroskop. Nav., 2007, no. 2 (57), pp. 43–53.

Kolevatov, A.P., et al., Fiber-optic gyro applied in navigation grade strapdown inertial systems: development, thermal compensation, and tests, Giroskop. Nav., 2010, no. 3, pp. 49–60.

Kurbatov, A.M. and Kurbatov, R.A., Methods of improving the accuracy of fiber-optic gyros, Gyroscopy Nav., 2012, no. 2, pp. 132–143.

Meshkovsky, I.K., et al., Three-axis fiber-optic gyro for marine navigation systems, Giroskop. Nav., 2009, no. 3, pp. 3–9.

Meshkovsky, I.K., et al., A three-axis fiber-optic gyro: the results of development and tests, Proc. 18th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2011, pp. 7–12.

Dranitsyna, E.V. and Egorov, D.A., Study on temperature dependence of fiber-optic gyro output within a strapdown inertial measurement unit, 14-ya Konf. molodykh uchenykh Navigatsiya i Upravlenie Dvizheniem (Proc. 14th Conf. of Young Scientists Navigation and Motion Control), St. Petersburg: Elektropribor, 2012, pp. 447–452.

Gorski, P., Ledzion, R., Bondarczuk, K., and Kucharczyk, W., Temperature dependence of linear electrooptic coefficients r113 and r333 in lithium niobate, Opto-Electronics Rev., 2008, vol. 16, no. 1, pp. 46–48.

Vakhrameev, E.I., Thermal drift of fiber-optic gyro, Priborostroenie, 2011, no. 1, pp. 32–37.

Shupe, D.M., Thermally induced nonreciprocity in the fiber-optic interferometer, App. Op., 1980, vol. 19, pp. 654–655.

Mohr, F. and Schadt, F., Error signal formation in FOGs through thermal and elastooptical environmental influences on the sensing coil, Inertial Sensors Sys., 2011, pp. 2.1–2.13.

Golikov, A.V, Temperature errors of fiber-optic gyros, Cand. Sci. Dissertation, Saratov, 2001.

Filatov, Yu.V., Opticheskie Giroskopy (Optical Gyros) St. Petersburg: LETI, Elektropribor, 2005.

Lefevre, H.C., The Fiber-Optic Gyroscope, London: Artech House, 1992.

Wong, K.K., Properties of Lithium Niobate, London, 2002.

Zook, D.J., Chen, D., and Otto, G.N., Temperature dependence and model of the electro-optic effect in LiNbO3, App. Phys. Lett., 1967, vol. 11, no. 5, pp. 159–161.

Dzhashitov, V.E. and Pankratov, V.M., Datchiki, pribory i sistemy aviakosmicheskogo i morskogo priborostroeniya v usloviyakh teplovykh vozdeistvii (Airspace and Marine Sensors, Devices, and Systems under Thermal Actions), Peshekhonov, V.G., Ed., St. Petersburg: Elektropribor, 2005.

Korkishko, Yu.N., et al., Navigation grade interferometric fiber-optical gyroscope, Proc. 14th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2007, pp. 141–150.

Dzhashitov, V.E., Reducing thermal sensitivity of fiberoptic gyros, Gyroscopy Nav., 2011, pp. 42–56.