Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giảm thiểu dấu chân carbon của các công trình xây dựng bằng cách sử dụng gạch và vật liệu cách nhiệt dựa trên biochar: Một bài tổng quan
Springer Science and Business Media LLC - Trang 1-34 - 2023
Tóm tắt
Tăng trưởng nhanh chóng của công nghiệp hóa và đô thị hóa toàn cầu đã dẫn đến việc sử dụng quá mức các nguồn năng lượng không tái tạo và sự phát thải khí nhà kính đang báo động trong ngành xây dựng. Để đối phó, việc áp dụng các vật liệu xây dựng bền vững và thân thiện với môi trường đã trở thành một giải pháp quan trọng nhằm đạt được các mục tiêu phát triển bền vững quốc tế do Liên Hợp Quốc đặt ra. Bài tổng quan này thảo luận về những lợi ích tiềm năng của việc đưa các loại gạch và vật liệu cách nhiệt dựa trên biochar vào sử dụng, tập trung vào các phương pháp chuẩn bị, tính chất vật liệu, khả năng giảm phát thải, hiệu quả trong việc giảm khí carbon, nâng cao khả năng cách nhiệt và triển vọng kinh tế hứa hẹn. Các điểm chính là: (1) Vật liệu dựa trên biochar có tiềm năng đáng kể trong việc giảm dấu chân carbon của các công trình và nâng cao tính chất cách nhiệt của chúng. (2) Với độ dẫn nhiệt dao động từ 0.08 đến 0.2 W/(m·K), vật liệu cách nhiệt biochar góp phần giảm tiêu thụ năng lượng và phát thải khí nhà kính. (3) Việc thay thế một tấn xi măng bằng biochar trong sản xuất gạch có thể giảm đáng kể từ 1351–1505 kg CO2-eq trong toàn bộ vòng đời. (4) Sử dụng biochar làm một phần của cách nhiệt bê tông tiết kiệm khoảng 59–65 kg carbon dioxide mỗi tấn trong khi vẫn mang lại lợi ích kinh tế rõ ràng. Mặc dù vật liệu cách nhiệt biochar có giá cao hơn so với các vật liệu cách nhiệt truyền thống như fiberglass và foam, nhưng những lợi ích tiết kiệm năng lượng có thể cân bằng khoản chi phí bổ sung này. (5) Vật liệu cách nhiệt biochar được sản xuất từ chất thải sinh học, góp phần nâng cao khả năng tái chế, bền vững về môi trường và hiệu quả về chi phí.
Từ khóa
#biochar #gạch biochar #vật liệu cách nhiệt #phát thải khí nhà kính #phát triển bền vữngTài liệu tham khảo
Adams M, Burrows V, Richardson S, Drinkwater J, Gamboa C, Collin C, Den X, Riemann L, Porteron S, Secher A (2019) Bringing embodied carbon upfront: coordinated action for the building and construction sector to tackle embodied carbon. https://www.worldgbc.org/news-media/bringing-embodied-carbon-upfront
Ahmad S, Khushnood RA, Jagdale P, Tulliani J-M, Ferro GA (2015) High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Mater Des 76:223–229. https://doi.org/10.1016/j.matdes.2015.03.048
Ahmad MR, Chen B, Duan H (2020) Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Sci Total Environ 718:137422. https://doi.org/10.1016/j.scitotenv.2020.137422
Akhtar A, Sarmah AK (2018) Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties. Sci Total Environ 616–617:408–416. https://doi.org/10.1016/j.scitotenv.2017.10.319
Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recycl 118:13–26. https://doi.org/10.1016/j.resconrec.2016.11.016
Asadi Zeidabadi Z, Bakhtiari S, Abbaslou H, Ghanizadeh AR (2018) Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr Build Mater 181:301–308. https://doi.org/10.1016/j.conbuildmat.2018.05.271
ASTM-C109/C109M-20b (2020) Standard test method For compressive strength of hydraulic cement mortars (Using 2-In. Or [50 Mm] cube Specimens). https://www.astm.org/c0109_c0109m-20.html
Babu K, Das O, Shanmugam V, Mensah RA, Försth M, Sas G, Restás Á, Berto F (2021) Fire behavior of 3D-printed polymeric composites. J Mater Eng Perform 30:4745–4755. https://doi.org/10.1007/s11665-021-05627-1
Biochar FL (2019) Biochar bright spots: biochar bricks. http://fingerlakesbiochar.com/biochar-bright-spots-biochar-bricks/
Boateng AA (2015) Rotary kilns: Transport phenomena and transport processes. Elsevier science. https://www.sciencedirect.com/book/9780128037805/rotary-kilns
Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao XD, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA (2014) New approaches to measuring biochar density and porosity. Biomass Bioenerg 66:176–185. https://doi.org/10.1016/j.biombioe.2014.03.059
Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Campos J, Fajilan S, Lualhati J, Mandap N, Clemente S (2020) Life cycle assessment of biochar as a partial replacement to Portland cement. IOP Conf Ser: Earth Environ Sci 479:012025. https://doi.org/10.1088/1755-1315/479/1/012025
Cao ML, Zhang C, Wei JQ (2013) Microscopic reinforcement for cement based composite materials. Constr Build Mater 40:14–25. https://doi.org/10.1016/j.conbuildmat.2012.10.012
Castro J, Lura P, Rajabipour F, Henkensiefken R, Weiss J (2010) Internal curing: discussion of the role of pore solution on relative humidity measurements and desorption of lightweight aggregate (LWA). Special publication 270:89–100. https://pure.psu.edu/en/publications/internal-curing-discussion-of-the-role-of-pore-solution-on-relati
Chen L, Msigwa G, Yang M, Osman AI, Fawzy S, Rooney DW, Yap P-S (2022a) Strategies to achieve a carbon neutral society: a review. Environ Chem Lett 20:2277-2310. https://doi.org/10.1007/s10311-022-01435-8
Chen L, Zhang YY, Wang L, Ruan SQ, Chen JF, Li HY, Yang J, Mechtcherine V, Tsang DCW (2022b) Biochar-augmented carbon-negative concrete. Chem Eng J 431:133946. https://doi.org/10.1016/j.cej.2021.133946
Chen L, Huang LP, Hua JM, Chen ZH, Wei LL, Osman AI, Fawzy S, Rooney DW, Dong L, Yap PS (2023) Green construction for low-carbon cities: a review. Environ Chem Lett 21:1627–1657. https://doi.org/10.1007/s10311-022-01544-4
Chhimwal M, Pandey D, Srivastava RK (2022) Pristine biochar and engineered biochar: differences and application. In: Ramola S, Mohan D, Masek O, Méndez A, Tsubota T (eds) Engineered biochar. Springer, Singapore. https://doi.org/10.1007/978-981-19-2488-0_1
Chin CO, Yang X, Kong SY, Paul SC, Susilawati WLS (2020) Mechanical and thermal properties of lightweight concrete incorporated with activated carbon as coarse aggregate. J Build Eng 31:101347. https://doi.org/10.1016/j.jobe.2020.101347
Colantoni A, Evic N, Lord R, Retschitzegger S, Proto AR, Gallucci F, Monarca D (2016) Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew Sustain Energy Rev 64:187–194. https://doi.org/10.1016/j.rser.2016.06.003
Cornelissen G, Pandit NR, Taylor P, Pandit BH, Sparrevik M, Schmidt HP (2016) Emissions and char quality of flame-curtain “Kon Tiki” kilns for farmer-scale charcoal/biochar production. PLoS ONE 11:e0154617. https://doi.org/10.1371/journal.pone.0154617
Cosentino I, Restuccia L, Ferro GA, Tulliani J-M (2019) Type of materials, pyrolysis conditions, carbon content and size dimensions: the parameters that influence the mechanical properties of biochar cement-based composites. Theoret Appl Fract Mech 103:102261. https://doi.org/10.1016/j.tafmec.2019.102261
Da Costa, C.R., Del Curto B, Ratti A, Nullb NC (2014) Mechanical and chemical characteristics of vegetable fibers, and some applications. In: International textile, clothing & design conference. https://hdl.handle.net/11311/866346
Cuthbertson D, Berardi U, Briens C, Berruti F (2019) Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass Bioenerg 120:77–83. https://doi.org/10.1016/j.biombioe.2018.11.007
Danish A, Mosaberpanah MA, Salim MU, Ahmad N, Ahmad F, Ahmad A (2021) Reusing biochar as a filler or cement replacement material in cementitious composites a review. Constr Build Mater 300:124295. https://doi.org/10.1016/j.conbuildmat.2021.124295
Das O, Loho TA, Capezza AJ, Lemrhari I, Hedenqvist MS (2018) A Novel Way of Adhering PET onto Protein (Wheat Gluten) Plastics to Impart Water Resistance. Coatings 8:388. https://doi.org/10.3390/coatings8110388
Di Tommaso M, Bordonzotti I (2016) NOx adsorption, fire resistance and CO2 sequestration of high performance, high durability concrete containing activated carbon. Book of abstracts 192:1036–1047
Dixit A, Verma A, Pang SD (2021) Dual waste utilization in ultra-high performance concrete using biochar and marine clay. Cement Concr Compos 120:104049. https://doi.org/10.1016/j.cemconcomp.2021.104049
Dong Y, Kong J, Mousavi S, Rismanchi B, Yap PS (2023) Wall insulation materials in different climate zones: a review on challenges and opportunities of available alternatives. Thermo 3:38–65. https://doi.org/10.3390/thermo3010003
Downie A, Crosky A, Munroe P. 2009. Physical properties of biochar. In: Lehmann J, Joseph S, (eds). Biochar for environmental management. Routledge, London, pp. 20. https://doi.org/10.4324/9781849770552
Drzymała T, Jackiewicz-Rek W, Gałaj J, Šukys R (2018) Assessment of mechanical properties of high strength concrete (HSC) after exposure to high temperature. J Civ Eng Manag 24:138–144. https://doi.org/10.3846/jcem.2018.457
Dupont C, Chiriac R, Gauthier G, Toche F (2014) Heat capacity measurements of various biomass types and pyrolysis residues. Fuel 115:644–651. https://doi.org/10.1016/j.fuel.2013.07.086
Emrich W. 1985. Handbook of charcoal making: the traditional and industrial methods. Reidel publishing company, pp. 12–15. https://doi.org/10.1007/978-94-017-0450-2
Falliano D, De Domenico D, Sciarrone A, Ricciardi G, Restuccia L, Ferro G, Tulliani J-M, Gugliandolo E (2019) Influence of biochar additions on the fracture behavior of foamed concrete. Frattura Ed Integrità Strutturale 14:189–198. https://doi.org/10.3221/IGF-ESIS.51.15
Farghali M, Osman AI, Umetsu K, Rooney DW (2022a) Integration of biogas systems into a carbon zero and hydrogen economy: a review. Environ Chem Lett 20:2853–2927. https://doi.org/10.1007/s10311-022-01468-z
Farghali M, Shimahata A, Mohamed IMA, Iwasaki M, Lu J, Ihara I, Umetsu K (2022b) Integrating anaerobic digestion with hydrothermal pretreatment for bioenergy production: waste valorization of plastic containing food waste and rice husk. Biochem Eng J 186:108546. https://doi.org/10.1016/j.bej.2022.108546
Farghali M, Osman AI, Mohamed IMA, Chen Z, Chen L, Ihara I, Yap P-S, Rooney DW (2023) Strategies to save energy in the context of the energy crisis: a review. Environ Chem Lett. 21: 2003-2039. https://doi.org/10.1007/s10311-023-01591-5
Ferro GA, Ahmad S, Khushnood RA, Restuccia L, Tulliani JM (2014) Improvements in self-consolidating cementitious composites by using micro carbonized aggregates. Frattura Ed Integrità Strutturale 8:75–83. https://doi.org/10.3221/IGF-ESIS.30.11
Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45:90–96. https://doi.org/10.1021/es101316v
Gupta S, Kashani A (2021) Utilization of biochar from unwashed peanut shell in cementitious building materials—effect on early age properties and environmental benefits. Fuel Process Technol 218:106841. https://doi.org/10.1016/j.fuproc.2021.106841
Gupta S, Kua HW (2018) Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Constr Build Mater 159:107–125. https://doi.org/10.1016/j.conbuildmat.2017.10.095
Gupta S, Kua HW (2019) Carbonaceous micro-filler for cement: effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar. Sci Total Environ 662:952–962. https://doi.org/10.1016/j.scitotenv.2019.01.269
Gupta S, Kua HW (2020) Combination of biochar and silica fume as partial cement replacement in mortar: performance evaluation under normal and elevated temperature. Waste Biomass Valorization 11:2807–2824. https://doi.org/10.1007/s12649-018-00573-x
Gupta S, Mahmood AH (2022) A multi-method investigation into rheological properties, hydration, and early-age strength of cement composites with admixtures recovered from inorganic and bio-based waste streams. Constr Build Mater 347:128529. https://doi.org/10.1016/j.conbuildmat.2022.128529
Gupta S, Kua HW, Cynthia SYT (2017) Use of biochar-coated polypropylene fibers for carbon sequestration and physical improvement of mortar. Cement Concr Compos 83:171–187. https://doi.org/10.1016/j.cemconcomp.2017.07.012
Gupta S, Kua HW, Koh HJ (2018a) Application of biochar from food and wood waste as green admixture for cement mortar. Sci Total Environ 619–620:419–435. https://doi.org/10.1016/j.scitotenv.2017.11.044
Gupta S, Kua HW, Low CY (2018b) Use of biochar as carbon sequestering additive in cement mortar. Cement Concr Compos 87:110–129. https://doi.org/10.1016/j.cemconcomp.2017.12.009
Gupta S, Kua HW, Pang SD (2018c) Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability. Constr Build Mater 167:874–889. https://doi.org/10.1016/j.conbuildmat.2018.02.104
Gupta S, Wei KH, Dai PS (2020) Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Constr Build Mater 234:117338. https://doi.org/10.1016/j.conbuildmat.2019.117338
Habert G, Miller SA, John VM, Provis JL, Favier A, Horvath A, Scrivener KL (2020) Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Revi Earth Environ 1:559–573. https://doi.org/10.1038/s43017-020-0093-3
Hankalin V, Ahonen T, Raiko R (2009) On thermal properties of a pyrolysing wood particle. In: (ed) 16. https://researchportal.tuni.fi/en/publications/on-thermal-properties-of-a-pyrolysing-wood-particle
He MJ, Xu ZB, Hou DY, Gao B, Cao XD, Ok YS, Rinklebe J, Bolan NS, Tsang DCW (2022) Waste-derived biochar for water pollution control and sustainable development. Nat Rev Earth Environ 3:444–460. https://doi.org/10.1038/s43017-022-00306-8
Henkensiefken R, Castro J, Bentz D, Nantung T, Weiss J (2009) Water absorption in internally cured mortar made with water-filled lightweight aggregate. Cem Concr Res 39:883–892. https://doi.org/10.1016/j.cemconres.2009.06.009
Horgnies M, Dubois-Brugger I, Gartner EM (2012) NOx de-pollution by hardened concrete and the influence of activated charcoal additions. Cem Concr Res 42:1348–1355. https://doi.org/10.1016/j.cemconres.2012.06.007
Huang Y, Anderson M, McIlveen-Wright D, Lyons GA, McRoberts WC, Wang YD, Roskilly AP, Hewitt NJ (2015) Biochar and renewable energy generation from poultry litter waste: a technical and economic analysis based on computational simulations. Appl Energy 160:656–663. https://doi.org/10.1016/j.apenergy.2015.01.029
Ithaka-institute-for-carbon-strategies (2019) Kon-Tiki flame curtain pyrolysis. https://www.ithaka-institut.org/en/ct/101-Kon-Tiki-flame-curtain-pyrolysis
Jackiewicz-Rek W, Drzymała T, Kuś A, Tomaszewski M (2016) Durability of high performance concrete (HPC) subject to fire temperature impact. Arch Civ Eng 62:73–93. https://doi.org/10.1515/ace-2015-0109
Ji C, Hong T, Kim H (2022) Statistical analysis of greenhouse gas emissions of South Korean residential buildings. Renew Sustain Energy Rev 156:111981. https://doi.org/10.1016/j.rser.2021.111981
Jiang X, Li B, Li J, Guo J (2020) Study on the properties of different biochar to cement paste. IOP Conf Ser Earth Environ Sci 526:012085. https://doi.org/10.1088/1755-1315/526/1/012085
Jiang DP, Qin J, Zhou XF, Li QL, Yi DQ, Wang B (2022) Improvement of thermal insulation and compressive performance of Al2O3-SiO2 aerogel by doping carbon nanotubes. Ceram Int 48:16290–16299. https://doi.org/10.1016/j.ceramint.2022.02.178
Jo BW, Kim CH, Tae GH, Park JB (2007) Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mater 21:1351–1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
Khushnood RA, Ahmad S, Restuccia L, Spoto C, Jagdale P, Tulliani JM, Ferro GA (2016) Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials. Front Struct Civ Eng 10:209–213. https://doi.org/10.1007/s11709-016-0330-5
Krou NJ, Batonneau-Gener I, Belin T, Mignard S, Javierre I, Dubois-Brugger I, Horgnies M (2015) Reactivity of volatile organic compounds with hydrated cement paste containing activated carbon. Build Environ 87:102–107. https://doi.org/10.1016/j.buildenv.2015.01.025
Lee H, Yang S, Wi S, Kim S (2019) Thermal transfer behavior of biochar-natural inorganic clay composite for building envelope insulation. Constr Build Mater 223:668–678. https://doi.org/10.1016/j.conbuildmat.2019.06.215
Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Change 11:403–427. https://doi.org/10.1007/s11027-005-9006-5
Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, Amonette JE, Cayuela ML, Camps-Arbestain M, Whitman T (2021) Biochar in climate change mitigation. Nat Geosci. 14:883–892. https://doi.org/10.1038/s41561-021-00852-8
Li C, Wu MX, Yao W (2019) Eco-efficient cementitious system consisting of belite-ye’elimite-ferrite cement, limestone filler, and silica fume. ACS Sustain Chem Eng 7:7941–7950. https://doi.org/10.1021/acssuschemeng.9b00702
Li Z (2011) Materials for making concrete. In: (ed) 23–93. https://doi.org/10.1002/9780470950067.ch2
Lian C, Zhuge Y, Beecham S (2011) The relationship between porosity and strength for porous concrete. Constr Build Mater 25:4294–4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005
Lin DF, Lin KL, Chang WC, Luo HL, Cai MQ (2008) Improvements of nano-SiO2 on sludge/fly ash mortar. Waste Manag 28:1081–1087. https://doi.org/10.1016/j.wasman.2007.03.023
Liu YY, Ma SQ, Chen JW (2018) A novel pyro-hydrochar via sequential carbonization of biomass waste: preparation, characterization and adsorption capacity. J Clean Prod 176:187–195. https://doi.org/10.1016/j.jclepro.2017.12.090
Liu T, Chen L, Yang M, Sandanayake M, Miao P, Shi Y, Yap P-S (2022) Sustainability Considerations of Green Buildings: A Detailed Overview on Current Advancements and Future Considerations. Sustainability. 14:14393. https://doi.org/10.3390/su142114393
LiuLiYang BKJ (2020) Study on the effect of water conservancy project construction on ecological environment. Inn Mong Environ Sci 32:209–210. https://doi.org/10.16647/j.cnki.cn15-1369/X.2020.05.130
Llorach-Massana P, Lopez-Capel E, Pena J, Rieradevall J, Montero JI, Puy N (2017) Technical feasibility and carbon footprint of biochar co-production with tomato plant residue. Waste Manag 67:121–130. https://doi.org/10.1016/j.wasman.2017.05.021
Ltd ECU (2023) Ready mix concrete prices. https://www.easymixconcrete.com/about-us/ready-mix-concrete-prices/
Lu JX, Shen PL, Zhang YY, Zheng HB, Sun YJ, Poon CS (2021) Early-age and microstructural properties of glass powder blended cement paste: Improvement by seawater. Cement Concr Compos 122:104165. https://doi.org/10.1016/j.cemconcomp.2021.104165
Maljaee H, Madadi R, Paiva H, Tarelho L, Ferreira VM (2021) Incorporation of biochar in cementitious materials: a roadmap of biochar selection. Constr Build Mater 283:122757. https://doi.org/10.1016/j.conbuildmat.2021.122757
Mašek O (2022) Biochar preparation by different thermo-chemical conversion processes. Springer. https://doi.org/10.1007/978-981-19-2488-0_3
Mašek O, Brownsort P, Cross A, Sohi S (2013a) Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151–155. https://doi.org/10.1016/j.fuel.2011.08.044
Mašek O, Budarin V, Gronnow M, Crombie K, Brownsort P, Fitzpatrick E, Hurst P (2013b) Microwave and slow pyrolysis biochar—comparison of physical and functional properties. J Anal Appl Pyrol 100:41–48. https://doi.org/10.1016/j.jaap.2012.11.015
Matuštík J, Hnátková T, Kočí V (2020) Life cycle assessment of biochar-to-soil systems: a review. J Clean Prod 259:120998. https://doi.org/10.1016/j.jclepro.2020.120998
Maxwell B, Joshua K, Brina P, Aime LT. 2020 Biochar bricks for building material closed project file. University of rochester. https://www.hajim.rochester.edu/senior-design-day/biochar-bricks-for-building-materials/
ASTM-C348–21 (2021) Standard test method for flexural strength of hydraulic-cement mortars. https://www.astm.org/c0348-21.html
Miller SA, John VM, Pacca SA, Horvath A (2018) Carbon dioxide reduction potential in the global cement industry by 2050. Cem Concr Res 114:115–124. https://doi.org/10.1016/j.cemconres.2017.08.026
Minunno R, O’Grady T, Morrison GM, Gruner RL (2021) Investigating the embodied energy and carbon of buildings: a systematic literature review and meta-analysis of life cycle assessments. Renew Sustain Energy Rev 143:110935. https://doi.org/10.1016/j.rser.2021.110935
Mo L, Fang J, Huang B, Wang A, Deng M (2019) Combined effects of biochar and MgO expansive additive on the autogenous shrinkage, internal relative humidity and compressive strength of cement pastes. Constr Build Mater 229:116877. https://doi.org/10.1016/j.conbuildmat.2019.116877
Morgan HM Jr, Bu Q, Liang J, Liu Y, Mao H, Shi A, Lei H, Ruan R (2017) A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour Technol 230:112–121. https://doi.org/10.1016/j.biortech.2017.01.059
MradChehab RG (2019) Mechanical and microstructure properties of biochar-based mortar: an internal curing agent for PCC. Sustainability. https://doi.org/10.3390/su11092491
Muñoz E, Curaqueo G, Cea M, Vera L, Navia R (2017) Environmental hotspots in the life cycle of a biochar-soil system. J Clean Prod 158:1–7. https://doi.org/10.1016/j.jclepro.2017.04.163
Muthukrishnan S, Gupta S, Kua HW (2019) Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theoret Appl Fract Mech 104:102376. https://doi.org/10.1016/j.tafmec.2019.102376
Navaratnam S, Wijaya H, Rajeev P, Mendis P, Nguyen K (2021) Residual stress-strain relationship for the biochar-based mortar after exposure to elevated temperature. Case Stud Constr Mater 14:e00540. https://doi.org/10.1016/j.cscm.2021.e00540
Nisticò R, Lavagna L, Versaci D, Ivanchenko P, Benzi P (2020) Chitosan and its char as fillers in cement-base composites: a case study. Boletín De La Sociedad Española De Cerámica y Vidrio 59:186–192. https://doi.org/10.1016/j.bsecv.2019.10.002
Omer MAB, Noguchi T (2020) A conceptual framework for understanding the contribution of building materials in the achievement of Sustainable Development Goals (SDGs). Sustain Cities Soc 52:101869. https://doi.org/10.1016/j.scs.2019.101869
Orsini F, Marrone P (2019) Approaches for a low-carbon production of building materials: a review. J Clean Prod 241:118380. https://doi.org/10.1016/j.jclepro.2019.118380
Osman AI, Hefny M, Abdel Maksoud MIA, Elgarahy AM, Rooney DW (2020) Recent advances in carbon capture storage and utilisation technologies: a review. Environ Chem Lett 19:797–849. https://doi.org/10.1007/s10311-020-01133-3
Osman AI, Chen L, Yang M, Msigwa G, Farghali M, Fawzy S, Rooney DW, Yap P-S (2022a) Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environ Chem Lett 21:741–764. https://doi.org/10.1007/s10311-022-01532-8
Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud M, Ajlan AA, Yousry M, Saleem Y, Rooney DW (2022b) Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environ Chem Lett 20:2385–2485. https://doi.org/10.1007/s10311-022-01424-x
Osman AI, Farghali M, Ihara I, Elgarahy AM, Ayyad A, Mehta N, Ng KH, Abd El-Monaem EM, Eltaweil AS, Hosny M, Hamed SM, Fawzy S, Yap P-S, Rooney DW (2023) Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review. Environ Chem Lett 21:1419–1476. https://doi.org/10.1007/s10311-023-01573-7
Odimegwu T C, Zakaria I Abood, M M, Nketsiah C B K, Ahmad M (2018) Review on different beneficial ways of applying alum sludge in a sustainable disposal manner. Civ. Eng. J, 4(9), 2230–2241.
Pandey D, Chhimwal M, Srivastava R (2022) Engineered biochar as construction material. In: (ed) Springer, 303–318. https://doi.org/10.1007/978-981-19-2488-0_16
Peng X, Jiang Y, Chen Z, Osman AI, Farghali M, Rooney DW, Yap P-S (2023) Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review. Environ Chem Lett 21:765–801. https://doi.org/10.1007/s10311-022-01551-5
Peters JF, Iribarren D, Dufour J (2015) Biomass pyrolysis for biochar or energy applications? a life cycle assessment. Environ Sci Technol 49:5195–5202. https://doi.org/10.1021/es5060786
Praneeth S, Guo R, Wang T, Dubey BK, Sarmah AK (2020) Accelerated carbonation of biochar reinforced cement-fly ash composites: enhancing and sequestering CO2 in building materials. Constr Build Mater 244:118363. https://doi.org/10.1016/j.conbuildmat.2020.118363
Praneeth S, Saavedra L, Zeng M, Dubey BK, Sarmah AK (2021) Biochar admixtured lightweight, porous and tougher cement mortars: mechanical, durability and micro computed tomography analysis. Sci Total Environ 750:142327. https://doi.org/10.1016/j.scitotenv.2020.142327
Puettmann M, Sahoo K, Wilson K, Oneil E (2020) Life cycle assessment of biochar produced from forest residues using portable systems. J Clean Prod 250:119564. https://doi.org/10.1016/j.jclepro.2019.119564
Rabaey K, Ragauskas AJ (2014) Editorial overview: energy biotechnology. Curr Opin Biotechnol 27:v–vi. https://doi.org/10.1016/j.copbio.2014.04.001
Radlinski M, Olek J (2012) Investigation into the synergistic effects in ternary cementitious systems containing portland cement, fly ash and silica fume. Cement Concr Compos 34:451–459. https://doi.org/10.1016/j.cemconcomp.2011.11.014
Raju P, Brooke C (2021) Economics of biochar. https://www.canr.msu.edu/news/economics-of-biochar
Ramola S, Mohan D, Masek O, Méndez A, Tsubota T (2022) Engineered biochar: fundamentals, preparation, characterization and applications. Springer Nature. https://doi.org/10.1007/978-981-19-2488-0
Remola S, Belwal T, Srivastava RK (2020) Thermochemical conversion of biomass waste-based biochar for environment remediation. Handb Nanomater Nanocomposites Energy Environ Appl. https://doi.org/10.1007/978-3-030-11155-7_122-2
Regmi P, Garcia Moscoso JL, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage 109:61–69. https://doi.org/10.1016/j.jenvman.2012.04.047
Restuccia L, Ferro GA (2016a) Nanoparticles from food waste: a “green” future for traditional building materials. In: Proceedings of the 9th international conference on fracture mechanics of concrete and concrete structures, Berkeley, CA, USA:22–25. https://doi.org/10.21012/FC9.276
Restuccia L, Ferro GA, Suarez-Riera D, Sirico A, Bernardi P, Belletti B, Malcevschi A (2020) Mechanical characterization of different biochar-based cement composites. In: 1st virtual conference on structural integrity (Vcsi1) 25:226–233. https://doi.org/10.1016/j.prostr.2020.04.027
Restuccia L, Ferro GA (2016b) Promising low cost carbon-based materials to improve strength and toughness in cement composites. Constr Build Mater 126:1034–1043. https://doi.org/10.1016/j.conbuildmat.2016.09.101
Restuccia L, Ferro GA (2018) Influence of filler size on the mechanical properties of cement-based composites. Fatigue Fract Eng Mater Struct 41:797–805. https://doi.org/10.1111/ffe.12694
Rhaouti Y, Taha Y, Benzaazoua M (2023) Assessment of the environmental performance of blended cements from a life cycle perspective: a systematic review. Sustain Prod Consum 36:32–48. https://doi.org/10.1016/j.spc.2022.12.010
Robb S, Dargusch P (2018) A financial analysis and life-cycle carbon emissions assessment of oil palm waste biochar exports from Indonesia for use in Australian broad-acre agriculture. Carbon Manag 9:105–114. https://doi.org/10.1080/17583004.2018.1435958
Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833. https://doi.org/10.1021/es902266r
Rodier L, Bilba K, Onesippe C, Arsene MA (2019) Utilization of bio-chars from sugarcane bagasse pyrolysis in cement-based composites. Ind Crops Prod. 141:111731. https://doi.org/10.1016/j.indcrop.2019.111731
Sabio E, Alvarez-Murillo A, Roman S, Ledesma B (2016) Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manag 47:122–132. https://doi.org/10.1016/j.wasman.2015.04.016
SabnisPranesh AM (2017) Life cycle energy analysis in buildings and sustainability assessment: a literature review. Am J Eng Res (AJER) 6:123–135
Sarwer A, Hamed SM, Osman AI, Jamil F, Al-Muhtaseb AH, Alhajeri NS, Rooney DW (2022) Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ Chem Lett 20:2797–2851. https://doi.org/10.1007/s10311-022-01458-1
Schmidt H (2014) The use of biochar as building material. Biochar J:2297–1114. https://www.biochar-journal.org/en/ct/3
Shackley S, Hammond J, Gaunt J, Ibarrola R (2011) The feasibility and costs of biochar deployment in the UK. Carbon Manag 2:335–356. https://doi.org/10.4155/cmt.11.22
Shanmugam V, Das O, Babu K, Marimuthu U, Veerasimman A, Johnson DJ, Neisiany RE, Hedenqvist MS, Ramakrishna S, Berto F (2021a) Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue 143:106007. https://doi.org/10.1016/j.ijfatigue.2020.106007
Shanmugam V, Mensah RA, Försth M, Sas G, Restás Á, Addy C, Xu Q, Jiang L, Neisiany RE, Singha S, George G, Jose ET, Berto F, Hedenqvist MS, Das O, Ramakrishna S (2021b) Circular economy in biocomposite development: state-of-the-art, challenges and emerging trends. Compos Part C Open Access 5:100138. https://doi.org/10.1016/j.jcomc.2021.100138
Shon CS, Mukashev T, Lee D, Zhang D, Kim J (2019) Can common reed fiber become an effective construction material? physical, mechanical, and thermal properties of mortar mixture containing common reed fiber. Sustainability 11:903. https://doi.org/10.3390/su11030903
Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977. https://doi.org/10.1039/c6ee00935b
Sirico A, Bernardi P, Belletti B, Malcevschi A, Dalcanale E, Domenichelli I, Fornoni P, Moretti E (2020) Mechanical characterization of cement-based materials containing biochar from gasification. Constr Build Mater 246:118490. https://doi.org/10.1016/j.conbuildmat.2020.118490
Suarez D (2018) Biochar as eco-friendly filler to enhance the sustainable performance cement. Dessertation, Politecnico di Torino, Italy
Wang L, Chen SS, Tsang DCW, Poon CS, Shih K (2016) Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. J Clean Prod 137:861–870. https://doi.org/10.1016/j.jclepro.2016.07.180
Wang L, Chen L, Tsang DCW, Guo B, Yang J, Shen Z, Hou D, Ok YS, Poon CS (2020a) Biochar as green additives in cement-based composites with carbon dioxide curing. J Clean Prod 258:120678. https://doi.org/10.1016/j.jclepro.2020.120678
Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, Chang SX, Zhang L, Rinklebe J, Yuan Z, Zhu Q, Xiang L, Tsang DCW, Xu L, Jiang X, Liu J, Wei N, Kastner M, Zou Y, Ok YS, Shen J, Peng D, Zhang W, Barcelo D, Zhou Y, Bai Z, Li B, Zhang B, Wei K, Cao H, Tan Z, Zhao LB, He X, Zheng J, Bolan N, Liu X, Huang C, Dietmann S, Luo M, Sun N, Gong J, Gong Y, Brahushi F, Zhang T, Xiao C, Li X, Chen W, Jiao N, Lehmann J, Zhu YG, Jin H, Schaffer A, Tiedje JM, Chen JM (2021) Technologies and perspectives for achieving carbon neutrality. Innovation (camb) 2:100180. https://doi.org/10.1016/j.xinn.2021.100180
Wang X, Chen H, Ding X, Yang H, Zhang S, Shen Y (2009) Properties of gas and char from microwave pyrolysis of pine sawdust. BioResources 4:946–959
Wang S, Li H, Zou S, Zhang G (2020b) Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy and Buildings. 226: 110358. https://doi.org/10.1016/j.enbuild.2020.110358
Weber K, Quicker P (2018) Properties of biochar. Fuel 217:240–261. https://doi.org/10.1016/j.fuel.2017.12.054
Wen J, Wang B, Dai Z, Shi X, Jin Z, Wang H, Jiang X (2023) New insights into the green cement composites with low carbon footprint: The role of biochar as cement additive/alternative. Resour Conserv Recycl 197:107081. https://doi.org/10.1016/j.resconrec.2023.107081
Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197. https://doi.org/10.1016/j.jenvman.2014.08.003
World-Bank (2020) State and trends of carbon pricing (2020) World Bank, Washington, DC. Tech, Rep
Wu F, Liu C, Zhang L, Lu Y, Ma Y (2018) Comparative study of carbonized peach shell and carbonized apricot shell to improve the performance of lightweight concrete. Constr Build Mater 188:758–771. https://doi.org/10.1016/j.conbuildmat.2018.08.094
Wu SQ, Chen DM, Zhao GD, Cheng Y, Sun BQ, Yan XJ, Han WB, Chen GQ, Zhang XH (2022) Controllable synthesis of a robust sucrose-derived bio-carbon foam with 3D hierarchical porous structure for thermal insulation, flame retardancy and oil absorption. Chem Eng J 434:134514. https://doi.org/10.1016/j.cej.2022.134514
Xiong T, Ok YS, Dissanayake PD, Tsang DCW, Kim S, Kua HW, Shah KW (2022) Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles. Sci Total Environ 827:154341. https://doi.org/10.1016/j.scitotenv.2022.154341
Xu W, Chen JJ, Wei J, Zhang B, Yuan X, Xu P, Yu Q, Ren J (2019) Evaluation of inherent factors on flowability, cohesiveness and strength of cementitious mortar in presence of zeolite powder. Constr Build Mater 214:61–73. https://doi.org/10.1016/j.conbuildmat.2019.04.115
Yang J, Tang LS, Bai L, Bao RY, Liu ZY, Xie BH, Yang MB, Yang W (2019) High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater Horiz 6:250–273. https://doi.org/10.1039/c8mh01219a
Yang Q, Zhou H, Bartocci P, Fantozzi F, Masek O, Agblevor FA, Wei Z, Yang H, Chen H, Lu X, Chen G, Zheng C, Nielsen CP, McElroy MB (2021) Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat Commun 12:1698. https://doi.org/10.1038/s41467-021-21868-z
Yang M, Chen L, Wang J, Msigwa G, Osman AI, Fawzy S, Rooney DW, Yap P-S (2023) Circular economy strategies for combating climate change and other environmental issues. Environ Chem Lett. 21:55-80. https://doi.org/10.1007/s10311-022-01499-6.
Yun TS, Jeong YJ, Han T-S, Youm K-S (2013) Evaluation of thermal conductivity for thermally insulated concretes. Energy Build 61:125–132. https://doi.org/10.1016/j.enbuild.2013.01.043
Zhang L, Zhou J (2020) Fractal characteristics of pore structure of hardened cement paste prepared by pressurized compact molding. Constr Build Mater 259:119856. https://doi.org/10.1016/j.conbuildmat.2020.119856
Zhang ZB, Cao XH, Liang P, Liu YH (2013) Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J Radioanal Nucl Chem 295:1201–1208. https://doi.org/10.1007/s10967-012-2017-2
Zhang X, Che Q, Cui X, Wei Z, Zhang X, Chen Y, Wang X, Chen H (2018) Application of biomass pyrolytic polygeneration by a moving bed: characteristics of products and energy efficiency analysis. Biores Technol 254:130–138. https://doi.org/10.1016/j.biortech.2018.01.083
Zhang YY, He MJ, Wang L, Yan JH, Ma B, Zhu XH, Ok YS, Mechtcherine V, Tsang DCW (2022) Biochar as construction materials for achieving carbon neutrality. Biochar 4:1–25. https://doi.org/10.1007/s42773-022-00182-x
Zhang X, Chen B, Ahmed MR (2021) Characterization of a novel bio-insulation material for multilayer wall and research on hysteresis effect. Constr Build Mater. 290:123162. https://doi.org/10.1016/j.conbuildmat.2021.123162
Zhao MY, Enders A, Lehmann J (2014) Short-and long-term flammability of biochars. Biomass Bioenergy 69:183–191. https://doi.org/10.1016/j.biombioe.2014.07.017
Zou L, Ni Y, Gao Y, Tang F, Jin J, Chen J (2018) Spatial variation of PCDD/F and PCB emissions and their composition profiles in stack flue gas from the typical cement plants in China. Chemosphere 195:491–497. https://doi.org/10.1016/j.chemosphere.2017.12.114