Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages

Energy and Environmental Science - Tập 9 Số 12 - Trang 3783-3793
Derya Baran1,2,3,4, Thomas Kirchartz5,6,7,8,2, Scot Wheeler1,3,4, Stoichko D. Dimitrov1,3,4, Maged Abdelsamie9,10,11, Jeffrey Gorman1,3,4, Raja Shahid Ashraf9,10,11, Sarah Holliday1,3,4, Andrew Wadsworth1,3,4, Nicola Gasparini12,13,8,14, Pascal Kaienburg5,7,8,2, He Yan15,16,17,18, Aram Amassian9,10,11, Christoph J. Brabec12,13,8,14, James R. Durrant1,3,4, Iain McCulloch1,3,9,4
1Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK
2IEK5-Photovoltaics
3Imperial College London
4London
552425 Jülich
6Faculty of Engineering and CENIDE
7Forschungszentrum Jülich
8Germany
9King Abdullah University of Science and Technology (KAUST), KSC, Thuwal 23955-6900, Saudi Arabia
10Saudi Arabia
11Thuwal 23955-6900
12Erlangen
13Friedrich-Alexander-University Erlangen-Nuremberg
14Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
15China
16Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
17Hong Kong University of Science and Technology
18Kowloon

Tóm tắt

Non-fullerene acceptors with optimized energy levels enable 10% efficient solar cells with reduced voltage losses <0.6 V.

Từ khóa


Tài liệu tham khảo

Ohkita, 2008, J. Am. Chem. Soc., 130, 3030, 10.1021/ja076568q

Di Nuzzo, 2013, Adv. Energy Mater., 3, 85, 10.1002/aenm.201200426

Vandewal, 2009, Nat. Mater., 8, 904, 10.1038/nmat2548

Li, 2015, J. Am. Chem. Soc., 137, 2231, 10.1021/ja5131897

Kawashima, 2015, Nat. Commun., 6, 10085, 10.1038/ncomms10085

Li, 2016, J. Mater. Chem. A, 4, 5890, 10.1039/C6TA00612D

Faist, 2013, Adv. Energy Mater., 3, 744, 10.1002/aenm.201200673

Baran, 2015, RSC Adv., 5, 64724, 10.1039/C5RA10089E

Bartynski, 2015, J. Am. Chem. Soc., 137, 5397, 10.1021/jacs.5b00146

Liu, 2016, Nat. Energy, 1, 16089, 10.1038/nenergy.2016.89

Hartnett, 2014, J. Am. Chem. Soc., 136, 16345, 10.1021/ja508814z

Hoke, 2013, Adv. Energy Mater., 3, 220, 10.1002/aenm.201200474

Chen, 2015, RSC Adv., 5, 3381, 10.1039/C4RA12505C

Liu, 2015, J. Mater. Chem. A, 3, 13632, 10.1039/C5TA03093E

Bloking, 2014, Adv. Energy Mater., 4, 1301426, 10.1002/aenm.201301426

Ni, 2016, Chem. Commun., 52, 465, 10.1039/C5CC07973J

Yao, 2015, Phys. Rev. Appl., 4, 014020, 10.1103/PhysRevApplied.4.014020

Bi, 2016, Sci. Adv., 2, e1501170, 10.1126/sciadv.1501170

Tvingstedt, 2014, Sci. Rep., 4, 6071, 10.1038/srep06071

Hou, 2016, Adv. Mater., 28, 5112, 10.1002/adma.201504168

Vandewal, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 125204, 10.1103/PhysRevB.81.125204

Tvingstedt, 2016, Adv. Energy Mater., 6, 1502230, 10.1002/aenm.201502230

Jeon, 2014, Nat. Mater., 13, 897, 10.1038/nmat4014

Liu, 2013, Nature, 501, 395, 10.1038/nature12509

Bryant, 2014, Adv. Mater., 26, 7499, 10.1002/adma.201403939

Min, 2015, Chem. Mater., 27, 227, 10.1021/cm5037919

Holliday, 2015, J. Am. Chem. Soc., 137, 898, 10.1021/ja5110602

Genin, 2012, Photochem. Photobiol. Sci., 11, 1756, 10.1039/c2pp25258a

Holliday, 2016, Nat. Commun., 7, 11585, 10.1038/ncomms11585

Dimitrov, 2014, Chem. Mater., 26, 616, 10.1021/cm402403z

Chen, 2014, Adv. Mater., 26, 2586, 10.1002/adma.201305092

Zhao, 2015, Energy Environ. Sci., 8, 520, 10.1039/C4EE02990A

Azimi, 2015, Adv. Energy Mater., 5, 1401692, 10.1002/aenm.201401692

Knesting, 2013, J. Phys. Chem. Lett., 4, 4038, 10.1021/jz4021525

R. J. Roe , Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford Univ. Press, New York, 2000

Liu, 2014, Nat. Commun., 5, 5293, 10.1038/ncomms6293

Dimitrov, 2016, Polymers, 8, 14, 10.3390/polym8010014

Lee, 2016, Adv. Mater., 28, 69, 10.1002/adma.201504010

Shuttle, 2010, Adv. Funct. Mater., 20, 698, 10.1002/adfm.200901734

Deledalle, 2014, J. Phys. Chem. C, 118, 8837, 10.1021/jp502948y

Baran, 2015, J. Phys. Chem. C, 119, 19668, 10.1021/acs.jpcc.5b05709

Bartesaghi, 2015, Nat. Commun., 6, 7083, 10.1038/ncomms8083

Hawks, 2013, Adv. Energy Mater., 3, 1201, 10.1002/aenm.201300194

Kirchartz, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 86, 165201, 10.1103/PhysRevB.86.165201

Kirchartz, 2013, J. Phys. Chem. Lett., 4, 2371, 10.1021/jz4012146

Wetzelaer, 2012, Adv. Energy Mater., 2, 1232, 10.1002/aenm.201200009

Burke, 2015, Adv. Energy Mater., 5, 1500123, 10.1002/aenm.201500123

Rau, 2014, Phys. Rev. B: Condens. Matter Mater. Phys., 90, 035211, 10.1103/PhysRevB.90.035211

Li, 2014, Adv. Energy Mater., 4, 1400084, 10.1002/aenm.201400084

Kaienburg, 2016, Phys. Rev. Appl., 6, 024001, 10.1103/PhysRevApplied.6.024001

Meager, 2013, J. Am. Chem. Soc., 135, 11537, 10.1021/ja406934j

Scharber, 2016, Adv. Mater., 28, 1994, 10.1002/adma.201504914

Zhang, 2009, J. Am. Chem. Soc., 131, 10814, 10.1021/ja9034818