Sự trao đổi khí sulfur giảm giữa đồng cỏ khô theo mùa và bầu khí quyển

Springer Science and Business Media LLC - Tập 128 - Trang 267-280 - 2016
Mary E. Whelan1, Robert C. Rhew2
1Sierra Nevada Research Institute, University of California at Merced, Merced, USA
2Department of Geography and Berkeley Atmospheric Sciences Center, University of California at Berkeley, Berkeley, USA

Tóm tắt

Các khí sulfur giảm là tiền chất của các aerosol sulfat, có vai trò như là hạt ngưng tụ trong mây và ảnh hưởng đến cân bằng bức xạ của Trái đất. Việc giảm thiểu lượng sulfur do con người thải ra vào khí quyển do các hoạt động giảm thiểu mưa acid kéo dài làm tăng ảnh hưởng của các nguồn phát thải tự nhiên lên ngân sách sulfur còn lại. Hầu hết các quan sát trước đây về lưu lượng khí sulfur giảm trên cạn tập trung vào các hệ sinh thái đất ngập nước, nơi mà lượng phát thải khí sulfur cao nhất. Sự sản xuất khí sulfur tự nhiên phân tán từ các hệ sinh thái oxy hóa rộng rãi hơn cần được xác định rõ. Ở đây, chúng tôi báo cáo lưu lượng khí sulfur và CO2 tại chỗ từ các vùng đồng cỏ nằm ngoài Santa Cruz, California, Hoa Kỳ (36.96°N, 122.08°W). Các phép đo hàng tháng đã được thực hiện bằng cách sử dụng buồng lưu lượng tĩnh từ tháng 3 năm 2012 đến tháng 3 năm 2014. Một lượng phát thải lớn dimethyl sulfide (DMS) đã được quan sát thấy trong mùa sinh trưởng. Trong mùa khô không sinh trưởng, các tỷ lệ trao đổi carbonyl sulfide (COS) nhỏ nhưng có thể định lượng được đã liên quan đến nhiệt độ đất. Khi độ ẩm của đất được tăng cường nhân tạo ở các ô đồng cỏ già cỗi, tỷ lệ tương đối của COS:CO2 tăng lên và sau đó trở lại tỷ lệ ban đầu trong vòng 2 giờ. Lưu lượng khí sulfur trong các sự kiện chuyển tiếp độ ẩm đất trong mùa ẩm (tức là sau khi có mưa) cho thấy rằng các môi trường hiếu khí chưa được nghiên cứu có thể cung cấp một đóng góp quan trọng cho việc tiêu thụ khí COS trong khí quyển và sản xuất DMS.

Từ khóa

#khí sulfur giảm #aerosol sulfat #axit sulfuric #đồng cỏ #CO2 #carbonyl sulfide

Tài liệu tham khảo

Alcolombri U, Ben-Dor S, Feldmesser E et al (2015) Identification of the algal dimethyl sulfide—releasing enzyme: a missing link in the marine sulfur cycle. Science 348:1466–1469. doi:10.1126/science.aab1586 Andreae MO (1990) Ocean–atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30:1–29. doi:10.1016/0304-4203(90)90059-L Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058. doi:10.1126/science.276.5315.1052 Asaf D, Rotenberg E, Tatarinov F et al (2013) Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nat Geosci 6:186–190. doi:10.1038/ngeo1730 Behrendt T, Veres PR, Ashuri F et al (2014) Characterisation of NO production and consumption: new insights by an improved laboratory dynamic chamber technique. Biogeosciences 11:5463–5492. doi:10.5194/bg-11-5463-2014 Berkelhammer M, Asaf D, Still C et al (2014) Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide. Global Biogeochem Cycles 28:161–179. doi:10.1002/2013GB004644 Billesbach DP, Berry JA, Seibt U et al (2014) Growing season eddy covariance measurements of carbonyl sulfide and CO2 fluxes: COS and CO2 relationships in Southern Great Plains winter wheat. Agric For Meteorol 184:48–55. doi:10.1016/j.agrformet.2013.06.007 Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31. doi:10.1007/BF01343734 Brühl C, Lelieveld J, Crutzen PJ, Tost H (2012) The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos Chem Phys 12:1239–1253. doi:10.5194/acp-12-1239-2012 Campbell JE, Carmichael GR, Chai T et al (2008) Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322:1085–1088. doi:10.1126/science.1164015 Campbell JE, Whelan ME, Seibt U et al (2015) Atmospheric carbonyl sulfide sources from anthropogenic activity: implications for carbon cycle constraints. Geophys Res Lett 42(8):3004–3010. doi:10.1002/2015GL063445 Castro MS, Galloway JN (1991) A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere. J Geophys Res 96:15427–15437 Charlson RJ, Warren SG, Lovelock JE, Andreae MO (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661 Cooper DJ, Saltzman ES (1987) Uptake of carbonyl sulfide by silver nitrate impregnated filters: Implications for the measurement of low level atmospheric H2S. Geophys Res Lett 14:206–209. doi:10.1029/GL014i003p00206 de Mello WZ, Hines ME (1994) Application of static and dynamic enclosures for determining dimethyl sulfide and carbonyl sulfide exchange in Sphagnum peatlands: implications for the magnitude and direction of flux. J Geophys Res 99:14601–14607 DeLaune RD, Devai I, Lindau CW (2002) Flux of reduced sulfur gases along a salinity gradient in Louisiana coastal marshes. Estuarine Coastal Shelf Sci 54:1003–1011 Devai I, DeLaune RD (1995) Formation of volatile sulfur compounds in salt marsh sediment as influenced by soil redox condition. Org Geochem 23:283–287. doi:10.1016/0146-6380(95)00024-9 Fall R, Albritton DL, Fehsenfeld FC et al (1988) Laboratory studies of some environmental variables controlling sulfur emissions from plants. J Atmos Chem 6:341–362. doi:10.1007/BF00051596 Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805 Geng C, Mu Y (2004) Carbonyl sulfide and dimethyl sulfide exchange between lawn and the atmosphere. J Geophys Res D: Atmos 109:D12302. doi:10.1029/2003JD004492 Geng C, Mu Y (2006) Carbonyl sulfide and dimethyl sulfide exchange between trees and the atmosphere. Atmos Environ 40:1373–1383. doi:10.1016/j.atmosenv.2005.10.023 Hilton TW, Zumkehr A, Kulkarni S et al (2015) Large variability in ecosystem models explains uncertainty in a critical parameter for quantifying GPP with carbonyl sulphide. Tellus B. doi:10.3402/tellusb.v67.26329 Jardine K, Yañez-Serrano AM, Williams J et al (2015) Dimethyl sulfide in the Amazon rain forest. Global Biogeochem Cycles 29:2014GB004969. doi:10.1002/2014GB004969 Jarvis P, Rey A, Petsikos C et al (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940. doi:10.1093/treephys/27.7.929 Kanda K, Tsuruta H, Minami K (1995) Emissions of biogenic sulfur gases from maize and wheat fields. Soil Sci Plant Nutr 41:1–8. doi:10.1080/00380768.1995.10419553 Kelly DP, Baker SC (1990) The organosulphur cycle: aerobic and anaerobic processes leading to turnover of C1-sulphur compounds. FEMS Microbiol Rev 7:241–246. doi:10.1111/j.1574-6968.1990.tb04919.x Kesselmeier J, Teusch N, Kuhn U (1999) Controlling variables for the uptake of atmospheric carbonyl sulfide by soil. J Geophys Res 104:11577–11584. doi:10.1029/1999JD900090 Khan MAH, Whelan ME, Rhew RC (2012) Analysis of low concentration reduced sulfur compounds (RSCs) in air: storage issues and measurement by gas chromatography with sulfur chemiluminescence detection. Talanta 88:581–586. doi:10.1016/j.talanta.2011.11.038 Lana A, Bell TG, Simó R et al (2011) An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem Cycles 25:GB1004. doi:10.1029/2010GB003850 Li C-Y, Wei T-D, Zhang S-H et al (2014) Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide. PNAS 111:1026–1031. doi:10.1073/pnas.1312354111 Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Biogenic trace gases: measuring emissions from soil and water, pp 14–51 Lomans BP, van der Drift C, Pol A, den Camp HJMO (2002) Microbial cycling of volatile organic sulfur compounds. Cellular Mol Life Sci 59:575–588 Ma S, Baldocchi DD, Xu L, Hehn T (2007) Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric For Meteorol 147:157–171. doi:10.1016/j.agrformet.2007.07.008 Manzoni S, Vico G, Katul G et al (2011) Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct Ecol 25:456–467. doi:10.1111/j.1365-2435.2010.01822.x Maseyk K, Berry JA, Billesbach D et al (2014) Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains. PNAS 111:9064–9069. doi:10.1073/pnas.1319132111 Melillo JM, Steudler PA (1989) The effect of nitrogen fertilization on the COS and CS2 emissions from temperature forest soils. J Atmos Chem 9:411–417 Minami K, Fukushi S (1981) Volatilization of carbonyl sulfide from paddy soils treated with sulfur-containing substances. Soil Sci Plant Nutr 27:339–345. doi:10.1080/00380768.1981.10431288 Montzka SA, Calvert P, Hall BD et al (2007) On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. J Geophys Res Atmos. doi:10.1029/2006JD007665 Notni J, Schenk S, Protoschill-Krebs G et al (2007) The missing link in COS metabolism: a model study on the reactivation of carbonic anhydrase from its hydrosulfide analogue. ChemBioChem 8:530–536. doi:10.1002/cbic.200600436 Protoschill-Krebs G, Kesselmeier J (1992) Enzymatic pathways for the consumption of carbonyl sulphide (COS) by higher plants. Botanica Acta 105:206–212 Protoschill-Krebs G, Wilhelm C, Kesselmeier J (1996) Consumption of carbonyl sulphide (COS) by higher plant carbonic anhydrase (CA). Atmos Environ 30:3151–3156. doi:10.1016/1352-2310(96)00026-X Quinn PK, Bates TS (2011) The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480:51–56. doi:10.1038/nature10580 Sandoval-Soto L, Stanimirov M, Von Hobe M et al (2005) Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2). Biogeosci 2:125–132. doi:10.5194/bg-2-125-2005 Schäfer H, Myronova N, Boden R (2010) Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J Exp Bot 61:315–334. doi:10.1093/jxb/erp355 Schulz M, Stonestrom D, Von Kiparski G et al (2011) Seasonal dynamics of CO2 profiles across a soil chronosequence, Santa Cruz, California. Appl Geochem 26(Suppl):S132–S134. doi:10.1016/j.apgeochem.2011.03.048 Seibt U, Kesselmeier J, Sandoval-Soto L et al (2010) A kinetic analysis of leaf uptake of COS and its relation to transpiration, photosynthesis and carbon isotope fractionation. Biogeosci 7:333–341. doi:10.5194/bg-7-333-2010 Sparling GP, Searle PL (1993) Dimethyl sulphoxide reduction as a sensitive indicator of microbial activity in soil: the relationship with microbial biomass and mineralization of nitrogen and sulphur. Soil Biol Biochem 25:251–256. doi:10.1016/0038-0717(93)90035-A Steinbacher M, Bingemer HG, Schmidt U (2004) Measurements of the exchange of carbonyl sulfide (OCS) and carbon disulfide (CS2) between soil and atmosphere in a spruce forest in central Germany. Atmos Environ 38:6043–6052 Stimler K, Montzka SA, Berry JA et al (2010) Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. N Phytol 186:869–878. doi:10.1111/j.1469-8137.2010.03218.x Stimler K, Berry JA, Montzka SA, Yakir D (2011) Association between carbonyl sulfide uptake and 18Δ during gas exchange in C3 and C4 leaves. Plant Physiol 157:509–517. doi:10.1104/pp.111.176578 Sun W, Maseyk K, Lett C, Seibt U (2016) Litter dominates surface fluxes of carbonyl sulfide in a Californian oak woodland. J Geophys Res Biogeosci 121:2015JG003149. doi:10.1002/2015JG003149 Unger S, Máguas C, Pereira JS et al (2010) The influence of precipitation pulses on soil respiration—assessing the “Birch effect” by stable carbon isotopes. Soil Biol Biochem 42:1800–1810. doi:10.1016/j.soilbio.2010.06.019 Van Diest H, Kesselmeier J (2008) Soil atmosphere exchange of carbonyl sulfide (COS) regulated by diffusivity depending on water-filled pore space. Biogeosci 5:475–483. doi:10.5194/bg-5-475-2008 Vico G, Manzoni S, Palmroth S, Katul G (2011) Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. N Phytol 192:640–652. doi:10.1111/j.1469-8137.2011.03847.x Watts SF (2000) The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos Environ 34:761–779. doi:10.1016/S1352-2310(99)00342-8 Whelan M, Rhew R (2015) Carbonyl sulfide produced by abiotic thermal and photo-degradation of soil organic matter from wheat field substrate. J Geophys Res Biogeosci 2014JG002661. doi:10.1002/2014JG002661 Whelan ME, Min D-H, Rhew RC (2013) Salt marshes as a source of atmospheric carbonyl sulfide. Atmos Environ 73:131–137. doi:10.1016/j.atmosenv.2013.02.048 Whelan ME, Hilton TW, Berry JA et al (2016) Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake. Atmos Chem Phys 16:3711–3726. doi:10.5194/acp-16-3711-2016 White AF, Schulz MS, Vivit DV et al (2008) Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration–depth profiles. Geochim Cosmochim Acta 72:36–68. doi:10.1016/j.gca.2007.08.029 White ML, Zhou Y, Russo RS et al (2010) Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2. Atmos Chem Phys 10:547–561 Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 123:79–96. doi:10.1016/j.agrformet.2003.10.004 Xu X, Bingemer HG, Schmidt U (2002) The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest. Atmos Chem Phys 2:171–181. doi:10.5194/acp-2-171-2002 Yi Z, Wang X, Sheng G et al (2007) Soil uptake of carbonyl sulfide in subtropical forests with different successional stages in south China. J Geophys Res 112:D08302