Reduced representation approach for identification of genome-wide SNPs and their annotation for economically important traits in Indian Tharparkar cattle
Tóm tắt
Từ khóa
Tài liệu tham khảo
Altmann A, Weber P, Bader D et al (2012) A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum Genet 131:1541–1554. https://doi.org/10.1007/s00439-012-1213-z
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 12 Jan 2019
Ba H, Jia B, Wang G et al (2017) Genome-wide SNP discovery and analysis of genetic diversity in farmed Sika Deer (Cervus nippon) in Northeast China using double-digest restriction site-associated DNA sequencing. G3: Genes Genomes Genet 7:3169–3176. https://doi.org/10.1534/g3.117.300082
Bai B, Wang L, Zhang YJ et al (2018) Developing genome-wide SNPs and constructing an ultrahigh-density linkage map in oil palm. Sci Rep 8:1–7. https://doi.org/10.1038/s41598-017-18613-2
Beier S, Thiel T, Münch T et al (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585. https://doi.org/10.1093/bioinformatics/btx198
Cartwright TC (1955) Responses of beef cattle to high ambient temperatures. J Anim Sci 14:350–362. https://doi.org/10.2527/jas1955.142350x
Catchen JM, Amores A, Hohenlohe P et al (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet 1:171–182. https://doi.org/10.1534/g3.111.000240
Chabane K, Ablett GA, Cordeiro GM et al (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52:903–909. https://doi.org/10.1007/s10722-003-6112-7
Cingolani P, Platts A, Wang LL et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6:80–92. https://doi.org/10.4161/fly.19695
Consortium TBH (2009) Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324:528–532. https://doi.org/10.1126/science.1167936
Czech B, Frąszczak M, Mielczarek M, Szyda J (2018) Identification and annotation of breed-specific single nucleotide polymorphisms in Bos taurus genomes. PLoS ONE 13:e0198419. https://doi.org/10.1371/journal.pone.0198419
DaCosta JM, Sorenson MD (2016) ddRAD-seq phylogenetics based on nucleotide, indel, and presence–absence polymorphisms: analyses of two avian genera with contrasting histories. Mol Phylogenet Evol 94:122–135. https://doi.org/10.1016/j.ympev.2015.07.026
Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330
Fernández ME, Echeverri AL, Henry M et al (2017) Bovine thyroglobulin gene polymorphisms and their association with sexual precocity in Guzerat bulls. Reprod Domest Anim 52:911–913. https://doi.org/10.1111/rda.12989
Gahlot GC (1999) Genetic evaluation of Tharparkar cattle. PhD Thesis, Ph. D. Thesis, Rajasthan Agricultural University, Bikaner
Gurgul A, Semik E, Pawlina K et al (2014) The application of genome-wide SNP genotyping methods in studies on livestock genomes. J Appl Genet 55:197–208. https://doi.org/10.1007/s13353-014-0202-4
Höglund JK, Buitenhuis B, Guldbrandtsen B et al (2015) Genome-wide association study for female fertility in Nordic Red cattle. BMC Genet 16:110. https://doi.org/10.1186/s12863-015-0269-x
Iqbal N, Liu X, Yang T et al (2019) Genomic variants identified from whole-genome resequencing of indicine cattle breeds from Pakistan. PLoS ONE 14:e0215065. https://doi.org/10.1371/journal.pone.0215065
Johnson HD (1965) Environmental temperature and lactation (with special reference to cattle). Int J Biometeorol 9:103–116. https://doi.org/10.1007/BF02188466
Keller I, Bensasson D, Nichols RA (2007) Transition-transversion bias is not universal: a counter example from grasshopper pseudogenes. PLoS Genet 3:e22. https://doi.org/10.1371/journal.pgen.0030022
Kraus RH, Kerstens HH, Van Hooft P et al (2011) Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genomics 12:150. https://doi.org/10.1186/1471-2164-12-150
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509
Li MJ, Yan B, Sham PC, Wang J (2015) Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief Bioinform 16:393–412. https://doi.org/10.1093/bib/bbu018
Liao X, Peng F, Forni S et al (2013) Whole genome sequencing of Gir cattle for identifying polymorphisms and loci under selection. Genome 56:592–598. https://doi.org/10.1139/gen-2013-0082
Malik AA, Sharma R, Ahlawat S et al (2018) Analysis of genetic relatedness among Indian cattle (Bos indicus) using genotyping-by-sequencing markers. Anim Genet 49:242–245. https://doi.org/10.1111/age.12650
Meglécz E, Costedoat C, Dubut V et al (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404. https://doi.org/10.1093/bioinformatics/btp670
Mudadu MA, Porto-Neto LR, Mokry FB et al (2016) Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle. BMC Genomics 17:1–16. https://doi.org/10.1186/s12864-016-2535-3
Nayee N, Sahana G, Gajjar S et al (2018) Suitability of existing commercial single nucleotide polymorphism chips for genomic studies in Bos indicus cattle breeds and their Bos taurus crosses. J Anim Breed Genet 135:432–441. https://doi.org/10.1111/jbg.12356
Patel A, Subramanian RB, Padh H et al (2017) Identification of single nucleotide polymorphism from Indian Bubalus bubalis through targeted sequence capture. Curr Sci 112:1230–1239. https://doi.org/10.18520/cs/v112/i06/1230-1239
Pérez F, Ortiz J, Zhinaula M et al (2005) Development of EST-SSR markers by data mining in three species of shrimp: Litopenaeus vannamei, Litopenaeus stylirostris, and Trachypenaeus birdy. Mar Biotechnol 7:554–569. https://doi.org/10.1007/s10126-004-5099-1
Peterson BK, Weber JN, Kay EH et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135. https://doi.org/10.1371/journal.pone.0037135
Pimentel ECG, Bauersachs S, Tietze M et al (2011) Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim Genet 42:251–262. https://doi.org/10.1111/j.1365-2052.2010.02148.x
Porto-Neto LR, Sonstegard TS, Liu GE et al (2013) Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping. BMC Genomics 14:876. https://doi.org/10.1186/1471-2164-14-876
Regatieri IC, Boligon AA, Costa RB et al (2017) Association between single nucleotide polymorphisms and sexual precocity in Nellore heifers. Anim Reprod Sci 177:88–96. https://doi.org/10.1016/j.anireprosci.2016.12.009
Rocha A, Randel RD, Broussard JR et al (1998) High environmental temperature and humidity decrease oocyte quality in Bos taurus but not in Bos taurus cows. Theriogenology 49:657–665. https://doi.org/10.1016/S0093-691X(98)00016-8
Rohrer GA, Fahrenkrug SC, Nonneman D et al (2002) Mapping microsatellite markers identified in porcine EST sequences1. Anim Genet 33:372–376. https://doi.org/10.1046/j.1365-2052.2002.00880.x
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Molecular cloning: a laboratory manual
Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. https://doi.org/10.1093/bioinformatics/btr026
Seif SM, Johnson HD, Lippincott AC (1979) The effects of heat exposure (31 degrees C) on Zebu and Scottish Highland cattle. Int J Biometeorol 23:9–14. https://doi.org/10.1007/bf01553372
Skinner JD, Louw GN (1966) Heat stress and spermatogenesis in Bos indicus and Bos taurus cattle. J Appl Physiol 21:1784–1790. https://doi.org/10.1152/jappl.1966.21.6.1784
Surya T, Vineeth MR, Sivalingam J et al (2018) Genomewide identification and annotation of SNPs in Bubalus bubalis. Genomics. https://doi.org/10.1016/j.ygeno.2018.11.021
Waters SM, McCabe MS, Howard DJ et al (2011) Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein-Friesian dairy cattle. Anim Genet 42:39–49. https://doi.org/10.1111/j.1365-2052.2010.02087.x
www.animalgenome.org. Accessed 10 Mar 2019
www.ncbi.nlm.nih.gov. Accessed 20 Feb 2019