Reduced-order-based feedback control of the Kuramoto–Sivashinsky equation
Tài liệu tham khảo
Alfaro, 1994, A five-mode bifurcation analysis of a Kuramoto–Sivashinsky equation with dispersion, Phys. Lett. A, 184, 184, 10.1016/0375-9601(94)90774-9
Armbruster, 1989, Kuramoto–Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math, 49, 676, 10.1137/0149039
Aubry, 1988, The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech, 192, 115, 10.1017/S0022112088001818
Ball, 1991, Dynamical eigenfunction decomposition of turbulent channel flow, Internat. J. Numer. Methods Fluids, 12, 585, 10.1002/fld.1650120606
H.T. Banks, R.C.H. Del Rosario, R.C. Smith, Reduced order model feedback control design: numerical implementation in a thin shell model, Center for Research in Scientific Computation, North Carolina State University, Technical Report CRSC-TR98-27, 1998; IEEE Trans. AC, submitted for publication.
Banks, 1996
Beeler, 2000, Feedback control methodologies for nonlinear systems, J. Optim. Theory Appl, 107, 1, 10.1023/A:1004607114958
Benney, 1966, Long waves in liquid films, J. Math. Phys, 45, 150, 10.1002/sapm1966451150
Berkooz, 1992, Oberservations on the proper orthogonal decomposition, 229
G. Berkooz, P. Holmes, J.L. Lumley, J.C. Mattingly, Low-dimensional models of coherent structures in turbulence, Phys. Rep. 287 (1997) N4:338–384.
Chang, 1994, Wave evolution on a falling film, Ann. Rev. Fluid Mech, 26, 103, 10.1146/annurev.fl.26.010194.000535
Collet, 1993, A global attracting set for the Kuramoto–Sivashinsky equation, Comm. Math. Phys, 152, 203, 10.1007/BF02097064
Constantin, 1982
Constantin, 1989, Spectral barriers and inertial manifolds for dissipative partial differential equations, J. Dyn. Differential Equations, 1, 45, 10.1007/BF01048790
Debussche, 1993, Inertial manifolds and their dimensions
C. Foias, I. Kukavica, Determining nodes for the Kuramoto–Sivashinsky equation, preprint, 1994.
Foias, 1988, Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl, 67, 197
Foias, 1988, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73, 309, 10.1016/0022-0396(88)90110-6
Foias, 1989, Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal, 87, 359, 10.1016/0022-1236(89)90015-3
Foias, 1991, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4, 135, 10.1088/0951-7715/4/1/009
Garca-Archilla, 1998, Postprocessing the Galerkin method, SIAM J. Math. Anal, 35, 941
W.L. Garrard, D.F. Enns, S.A. Snell, Nonlinear feedback control of highly manoeuvrable aircraft, Internat. J. Control 56 (1992) N4:799–812.
Goodman, 1994, Stability of the Kuramoto–Sivashinsky and related systems, Comm. Pure Appl. Math, 47, 293, 10.1002/cpa.3160470304
Hyman, 1986, The Kuramoto–Sivashinsky equation, Physica D, 18, 113, 10.1016/0167-2789(86)90166-1
Hyman, 1986, Order and complexity in the Kuramoto–Sivashinsky model of weakly turbulent interfaces, Physica D, 23, 265, 10.1016/0167-2789(86)90136-3
Il'yashenko, 1992, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation, J. Dyn. Differential Equations, 4, 585, 10.1007/BF01048261
Jolly, 1990, Approximate inertial manifolds for the Kuramoto–Sivashinsky equation, Physica D, 44, 38, 10.1016/0167-2789(90)90046-R
Jones, 1994, A remark on quasi-stationary approximate inertial manifolds for the Navier–Stokes equations, SIAM J. Math. Anal, 25, 894, 10.1137/S0036141092230428
Jones, 1996, C1 approximations of inertial manifolds for dissipative nonlinear equations, J. Differential Equations, 127, 54, 10.1006/jdeq.1996.0061
Kevrekidis, 1990, Back in the saddle again, SIAM J. Appl. Math, 50, 760, 10.1137/0150045
Kirby, 1990, A proper orthogonal decomposition of a simulated supersonic shear layer, Internat. J. Numer. Methods Fluids, 10, 411, 10.1002/fld.1650100405
Kirby, 1990, Application of the Karhunen–Loève procedure for the characterization of human faces, IEEE Trans. Pattern Anal. Mach. Intell, 12, N1:103, 108, 10.1109/34.41390
Kunisch, 1999, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl, 102, 345, 10.1023/A:1021732508059
Lasiecka, 1991
Ly, 2002, Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor, Quart. Appl. Math, 60, 631, 10.1090/qam/1939004
Ly, 2001, Modeling and control of physical processes using proper orthogonal decomposition, Comput. Math. Appl, 33, 223
Lumley, 1967, The structure of inhomogeneous turbulent flows, 166
Margolin, 1992, An approximate inertial manifold for computing Burgers’ equation. Experimental mathematics, Physica D, 60, 175, 10.1016/0167-2789(92)90234-E
Marion, 1989, Approximate inertial manifolds for the pattern formation Cahn-Hilliard equations, Math. Model Numer. Anal, 23, 463, 10.1051/m2an/1989230304631
Marion, 1989, Approximate inertial manifolds for the reaction diffusion equations in high space dimension, J. Dyn. Differential Equations, 1, 245, 10.1007/BF01053928
Michelson, 1977, Nonlinear analysis of hydrodynamics instability in laminar flames II. Numerical experiments, Acta Astronaut, 4, 1207, 10.1016/0094-5765(77)90097-2
Moin, 1989, Characteristic-eddy decomposition of turbulence in a channel, J. Fluids Mech, 200, 417, 10.1017/S0022112089000741
Nicolaenko, 1985, Some global dynamical properties of the Kuramoto–Sivashinsky equation, Physica D, 16, 155, 10.1016/0167-2789(85)90056-9
Rajaee, 1994, Low-dimensional description of free-shear-flow coherent structures and their dynamical behavior, J. Fluid Mech, 258, 1, 10.1017/S0022112094003228
Robinson, 1994, Inertial manifolds for the Kuramoto–Sivashinsky equation, Phys. Lett. A, 184, 190, 10.1016/0375-9601(94)90775-7
Sell, 1992, Inertial manifolds—the nonself-adjoint case, J. Differential Equations, 96, 203, 10.1016/0022-0396(92)90152-D
Sirovich, 1987, Turbulence and the dynamics of coherent structures, part II, Quart. Appl. Math, XLV, N3:573, 582
Sivashinsky, 1977, Nonlinear analysis of hydrodynamics instability in laminar flames I. Derivations of basic equations, Acta Astronaut, 4, 1177, 10.1016/0094-5765(77)90096-0
Sivashinsky, 1980, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math, 39, 67, 10.1137/0139007
Smyrlis, 1991, Predicting chaos for infinite dimensional dynamical systems, Proc. Natl. Acad. Sci. USA, 88, 11129, 10.1073/pnas.88.24.11129
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, Vol. 68, Springer, New York, 1988.
Temam, 1994, Estimates on the lowest dimension of inertial manifolds for the Kuramoto–Sivashinsky equation in the general case, Differential Integral Equations, 7, 1095, 10.57262/die/1370267723
Titi, 1990, On approximate inertial manifolds to the Navier–Stokes equations, J. Math. Anal. Appl, 149, 540, 10.1016/0022-247X(90)90061-J