Reduced orbitofrontal cortical thickness in male adolescents with internet addiction

Soon-Beom Hong1, Jae-Won Kim2, Eun‐Jung Choi3, Ho-Hyun Kim4, Jeong-Eun Suh5, Chang-Dai Kim6, Paul Klauser1, Sarah Whittle1, Murat Yücel1, Christos Pantelis1, Siyan Yi3
1Melbourne Neuropsychiatry Center, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
2Division of Child and Adolescent Psychiatry, Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
3Department of Child Development and Family Studies, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
4Interdisciplinary Program (Early Childhood Education Major), College of Education, Seoul National University, Seoul, Republic of Korea
5Center for Campus Life & Culture, Seoul National University, Seoul, Republic of Korea
6Department of Education (Educational Counseling Major), College of Education, Seoul National University, Seoul, Republic of Korea

Tóm tắt

Abstract Background The orbitofrontal cortex (OFC) has consistently been implicated in the pathology of both drug and behavioral addictions. However, no study to date has examined OFC thickness in internet addiction. In the current study, we investigated the existence of differences in cortical thickness of the OFC in adolescents with internet addiction. On the basis of recently proposed theoretical models of addiction, we predicted a reduction of thickness in the OFC of internet addicted individuals. Findings Participants were 15 male adolescents diagnosed as having internet addiction and 15 male healthy comparison subjects. Brain magnetic resonance images were acquired on a 3T MRI and group differences in cortical thickness were analyzed using FreeSurfer. Our results confirmed that male adolescents with internet addiction have significantly decreased cortical thickness in the right lateral OFC (p<0.05). Conclusion This finding supports the view that the OFC alterations in adolescents with internet addiction reflect a shared neurobiological marker of addiction-related disorders in general.

Từ khóa


Tài liệu tham khảo

Ko CH, Yen JY, Yen CF, Chen CS, Chen CC: The association between Internet addiction and psychiatric disorder: A review of the literature. Eur Psychiat. 2012, 27: 1-8.

Holden C: 'Behavioral' addictions: do they exist?. Sci. 2001, 294: 980-982. 10.1126/science.294.5544.980.

Goldney RD: The utility of the DSM nosology of mood disorders. Can J Psychiatry. 2006, 51: 874-878.

Volkow ND, Fowler JS: Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000, 10: 318-325. 10.1093/cercor/10.3.318.

London ED, Ernst M, Grant S, Bonson K, Weinstein A: Orbitofrontal cortex and human drug abuse: functional imaging. Cereb Cortex. 2000, 10: 334-342. 10.1093/cercor/10.3.334.

Dom G, Sabbe B, Hulstijn W, van den Brink W: Substance use disorders and the orbitofrontal cortex: systematic review of behavioural decision-making and neuroimaging studies. Br J Psychiatry. 2005, 187: 209-220. 10.1192/bjp.187.3.209.

Goldstein RZ, Volkow ND: Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002, 159: 1642-1652. 10.1176/appi.ajp.159.10.1642.

Cheetham A, Allen NB, Whittle S, Simmons JG, Yucel M, Lubman DI: Orbitofrontal volumes in early adolescence predict initiation of cannabis use: a 4-year longitudinal and prospective study. Biol Psychiatry. 2012, 71: 684-692. 10.1016/j.biopsych.2011.10.029.

Dong G, Huang J, Du X: Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. J Psychiatr Res. 2011, 45: 1525-1529. 10.1016/j.jpsychires.2011.06.017.

Han DH, Bolo N, Daniels MA, Arenella L, Lyoo IK, Renshaw PF: Brain activity and desire for Internet video game play. Compr Psychiatry. 2011, 52: 88-95. 10.1016/j.comppsych.2010.04.004.

Han DH, Kim YS, Lee YS, Min KJ, Renshaw PF: Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychol Behav Soc Netw. 2010, 13: 655-661. 10.1089/cyber.2009.0327.

Ko CH, Liu GC, Hsiao S, Yen JY, Yang MJ, Lin WC, Yen CF, Chen CS: Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res. 2009, 43: 739-747. 10.1016/j.jpsychires.2008.09.012.

Yuan K, Qin W, Wang G, Zeng F, Zhao L, Yang X, Liu P, Liu J, Sun J, von Deneen KM: Microstructure abnormalities in adolescents with internet addiction disorder. PLoS One. 2011, 6: e20708-10.1371/journal.pone.0020708.

Park HS, Kim SH, Bang SA, Yoon EJ, Cho SS, Kim SE: Altered regional cerebral glucose metabolism in internet game overusers: a 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectr. 2010, 15: 159-166.

Block JJ: Issues for DSM-V: internet addiction. Am J Psychiatry. 2008, 165: 306-307. 10.1176/appi.ajp.2007.07101556.

Widyanto L, McMurran M: The psychometric properties of the internet addiction test. Cyberpsychol Behav. 2004, 7: 443-450. 10.1089/cpb.2004.7.443.

Christakis DA: Internet addiction: a 21st century epidemic?. BMC Med. 2010, 8: 61-10.1186/1741-7015-8-61.

Flisher C: Getting plugged in: an overview of internet addiction. J Paediatr Child Health. 2010, 46: 557-559. 10.1111/j.1440-1754.2010.01879.x.

Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N: Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997, 36: 980-988. 10.1097/00004583-199707000-00021.

Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006, 31: 968-980. 10.1016/j.neuroimage.2006.01.021.

Tessner KD, Hill SY: Neural circuitry associated with risk for alcohol use disorders. Neuropsychol Rev. 2010, 20: 1-20. 10.1007/s11065-009-9111-4.

Mar AC, Walker ALJ, Theobald DE, Eagle DM, Robbins TW: Dissociable Effects of Lesions to Orbitofrontal Cortex Subregions on Impulsive Choice in the Rat. J Neurosci. 2011, 31: 6398-6404. 10.1523/JNEUROSCI.6620-10.2011.

Elliott R, Dolan RJ, Frith CD: Dissociable functions in the medial and lateral orbitofrontal cortex: Evidence from human neuroimaging studies. Cereb Cortex. 2000, 10: 308-317. 10.1093/cercor/10.3.308.

McClure SM, Laibson DI, Loewenstein G, Cohen JD: Separate neural systems value immediate and delayed monetary rewards. Sci. 2004, 306: 503-507. 10.1126/science.1100907.

Rotge JY, Langbour N, Jaafari N, Guehl D, Bioulac B, Aouizerate B, Allard M, Burbaud P: Anatomical alterations and symptom-related functional activity in obsessive-compulsive disorder are correlated in the lateral orbitofrontal cortex. Biol Psychiatry. 2010, 67: e37-e38. 10.1016/j.biopsych.2009.10.007.

Chamberlain SR, Menzies L, Hampshire A, Suckling J, Fineberg NA, del Campo N, Aitken M, Craig K, Owen AM, Bullmore ET: Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Sci. 2008, 321: 421-422. 10.1126/science.1154433.

Rotge JY, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, Aouizerate B, Burbaud P: Gray matter alterations in obsessive-compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacol. 2010, 35: 686-691. 10.1038/npp.2009.175.

Rotge JY, Guehl D, Dilharreguy B, Cuny E, Tignol J, Bioulac B, Allard M, Burbaud P, Aouizerate B: Provocation of obsessive-compulsive symptoms: a quantitative voxel-based meta-analysis of functional neuroimaging studies. J Psychiatry Neurosci. 2008, 33: 405-412.

Zhou Z, Yuan G, Yao J: Cognitive biases toward Internet game-related pictures and executive deficits in individuals with an Internet game addiction. PLoS One. 2012, 7: e48961-10.1371/journal.pone.0048961.

Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J: Intellectual ability and cortical development in children and adolescents. Nature. 2006, 440: 676-679. 10.1038/nature04513.