Redox potential control and applications in microaerobic and anaerobic fermentations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Auchinvole, 2012, Monitoring intracellular redox potential changes using SERS nanosensors, ACS Nano, 6, 888, 10.1021/nn204397q
Bagramyan, 2000, Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival: effects of impermeable oxigent, Bioelectrochemistry, 51, 151, 10.1016/S0302-4598(00)00065-9
Bai, 2008, Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnol Adv, 26, 89, 10.1016/j.biotechadv.2007.09.002
Baker, 2000, Plasma membrane NADH-oxidoreductase system: A critical review of the structural and functional data, Antioxid Redox Signaling, 2, 197, 10.1089/ars.2000.2.2-197
Berríos-Rivera, 2002, The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures, Metab Eng, 4, 230, 10.1006/mben.2002.0228
Bond-Watts, 2011, Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways, Nat Chem Biol, 7, 222, 10.1038/nchembio.537
Chen, 2012, Effects of culture redox potential on succinic acid production by Corynebacterium crenatum under anaerobic conditions, Process Biochem, 47, 1250, 10.1016/j.procbio.2012.04.026
Collas, 2012, Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC824 engineered strains, AMB Express, 2, 45, 10.1186/2191-0855-2-45
Cooksley, 2012, Targeted mutagenesis of the Clostridium acetobutylicum acetone–butanol–ethanol fermentation pathway, Metab Eng, 14, 630, 10.1016/j.ymben.2012.09.001
Dai, 2012, Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation, Biotechnol Biofuels, 5, 44, 10.1186/1754-6834-5-44
de Graef, 1999, The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli, J Bacteriol, 181, 2351, 10.1128/JB.181.8.2351-2357.1999
du Preez, 1988, The relation between redox potential and D-xylose fermentation by Candida shehatae and Pichia stipitis, Biotechnol Lett, 10, 901, 10.1007/BF01027003
Du, 2006, Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae, Appl Microbiol Biotechnol, 69, 554, 10.1007/s00253-005-0001-2
Du, 2007, Novel redox potential-based screening strategy for rapid isolation of Klebsiella pneumoniae mutants with enhanced 1,3-propanediol-producing capability, Appl Environ Microbiol, 73, 4515, 10.1128/AEM.02857-06
Dürre, 2008, Fermentative butanol production bulk chemical and biofuel, Ann N Y Acad Sci, 1125, 353, 10.1196/annals.1419.009
Fleming, 2010, Electronic interfacing with living cells, Adv Biochem Eng Biotechnol, 117, 155
Gheshlaghi, 2009, Metabolic pathways of clostridia for producing butanol, Biotechnol Adv, 27, 764, 10.1016/j.biotechadv.2009.06.002
Girbal, 1995, How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH, FEMS Microbiol Rev, 16, 151, 10.1111/j.1574-6976.1995.tb00163.x
Grimmler, 2011, Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum, J Mol Microbiol Biotechnol, 20, 1, 10.1159/000320973
Grupe, 1992, Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction, Appl Environ Microbiol, 58, 3896, 10.1128/AEM.58.12.3896-3902.1992
Guo, 2009, Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production, Appl Microbiol Biotechnol, 82, 287, 10.1007/s00253-008-1777-7
Guo, 2011, Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast, J Ind Microbiol Biotechnol, 38, 935, 10.1007/s10295-010-0864-9
Heap, 2007, The ClosTron: a universal gene knock-out system for the genus Clostridium, J Microbiol Methods, 70, 452, 10.1016/j.mimet.2007.05.021
Hönicke, 2012, Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios, N Biotechnol, 29, 485, 10.1016/j.nbt.2012.01.001
Hou, 2009, Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 82, 909, 10.1007/s00253-009-1900-4
Hou, 2010, Metabolic impact of increased NADH availability in Saccharomyces cerevisiae, Appl Environ Microbiol, 76, 851, 10.1128/AEM.02040-09
Huang, 2010, Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass, Biotechnol Adv, 28, 651, 10.1016/j.biotechadv.2010.05.015
Ingledew, 1999, Alcohol production by Saccharomyces cerevisiae: a yeast primer, 49
Jeon, 2010, Improvement of ethanol production by electrochemical redox combination of Zymomonas mobilis and Saccharomyces cerevisiae, J Microbiol Biotechnol, 20, 94, 10.4014/jmb.0904.04029
Jeon, 2009, Electrochemical and biochemical analysis of ethanol fermentation of Zymomonas mobilis KCCM11336, J Microbiol Biotechnol, 19, 666
Jeon, 2009, Enrichment of hydrogenotrophic methanogens in coupling with methane production using electrochemical bioreactor, J Microbiol Biotechnol, 19, 1665, 10.4014/jmb.0904.04002
Jones, 1986, Acetone–butanol fermentation revisited, Microbiol Rev, 50, 484, 10.1128/MMBR.50.4.484-524.1986
Kastner, 2003, Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis, Appl Microbiol Biotechnol, 63, 96, 10.1007/s00253-003-1320-9
Keasling, 2008, Metabolic engineering delivers next-generation biofuels, Nat Biotechnol, 26, 298, 10.1038/nbt0308-298
Kim, 1984, Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields, Appl Environ Microbiol, 48, 764, 10.1128/AEM.48.4.764-770.1984
Kim, 2006, Effect of gas sparging on continuous fermentative hydrogen production, Int J Hydrogen Energy, 31, 2158, 10.1016/j.ijhydene.2006.02.012
Kjaergaard, 1977, The redox potential: Its use and control in biotechnology, Adv Biochem Eng, 7, 131, 10.1007/BFb0048444
Kültz, 2005, Molecular and evolutionary basis of the cellular stress response, Annu Rev Physiol, 67, 225, 10.1146/annurev.physiol.67.040403.103635
Lee, 2008, Fermentative butanol production by clostridia, Biotechnol Bioeng, 101, 209, 10.1002/bit.22003
Lee, 2012, Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol–butanol–ethanol fermentation, Appl Environ Microbiol, 78, 1416, 10.1128/AEM.06382-11
Li, 2010, Enhanced production of succinic acid by Actinobacillus succinogenes with reductive carbon source, Process Biochem, 45, 980, 10.1016/j.procbio.2010.03.001
Li, 2010, Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes, Bioprocess Biosyst Eng, 33, 911, 10.1007/s00449-010-0414-x
Lin, 2010, Correlations between reduction–oxidation potential profiles and growth patterns of Saccharomyces cerevisiae during very-high-gravity fermentation, Process Biochem, 45, 765, 10.1016/j.procbio.2010.01.018
Liu, 2011, Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation, J Biotechnol, 153, 42, 10.1016/j.jbiotec.2011.03.007
Liu, 2011, A kinetic growth model for Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity environment, Biochem Eng J, 56, 63, 10.1016/j.bej.2011.05.008
Liu, 2011, Ageing vessel configuration for continuous redox potential-controlled very-high-gravity fermentation, J Biosci Bioeng, 111, 61, 10.1016/j.jbiosc.2010.09.003
Liu, 2011, Production of lactate in Escherichia coli by redox regulation genetically and physiologically, Appl Biochem Biotechnol, 164, 162, 10.1007/s12010-010-9123-9
Lütke-Eversloh, 2011, Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production, Curr Opin Biotechnol, 22, 1, 10.1016/j.copbio.2011.01.011
Mason, 2006, Thermodynamic basis for redox regulation of the Yap1 singnal transduction pathway, Biochemistry, 45, 13409, 10.1021/bi061136y
Matsushika, 2009, Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl Microbiol Biotechnol, 84, 37, 10.1007/s00253-009-2101-x
Meyer, 1986, Carbon monoxide gasing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum, Appl Microbiol Biotechnol, 24, 159, 10.1007/BF01982561
Mizuno, 2000, Enhancement of hydrogen production from glucose by nitrogen gas sparging, Bioresour Technol, 73, 59, 10.1016/S0960-8524(99)00130-3
Mu, 2010, Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system, Environ Sci Technol, 45, 782, 10.1021/es1022812
Murray, 2003, Harper's illustrated biochemistry, 87
Murray, 2011, Redox regulation in respiring Saccharomyces cerevisiae, Biochim Biophys Acta, 1810, 945, 10.1016/j.bbagen.2011.04.005
Na, 2007, Effect of electrochemical redox reaction on growth and metabolism of Saccharomyces cerevisiae as an environmental factor, J Microbiol Biotechnol, 17, 445
Nakashimada, 2002, Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states, Int J Hydrogen Energy, 27, 1399, 10.1016/S0360-3199(02)00128-3
Nakayama, 2008, Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4, Appl Microbiol Biotechnol, 78, 483, 10.1007/s00253-007-1323-z
Needham, 1926, The oxidation–reduction potential of protoplasm: a review, Protoplasma, 1, 255, 10.1007/BF01602996
Papoutsakis, 2008, Engineering solventogenic clostridia, Curr Opin Biotechnol, 19, 420, 10.1016/j.copbio.2008.08.003
Park, 1999, Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation, J Bacteriol, 181, 2403, 10.1128/JB.181.8.2403-2410.1999
Peguin, 1996, Modulation of metabolism of Clostridium acetobutylicum grown in chemostat culture in a three-electrode potentiostatic system with methyl viologen as electron carrier, Biotechnol Bioeng, 51, 342, 10.1002/(SICI)1097-0290(19960805)51:3<342::AID-BIT9>3.0.CO;2-D
Pei, 2011, The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus, Metab Eng, 13, 186, 10.1016/j.ymben.2010.12.006
Pham, 2008, Gaseous environments modify physiology in the brewing yeast Saccharomyces cerevisiae during batch alcoholic fermentation, J Appl Microbiol, 105, 858, 10.1111/j.1365-2672.2008.03821.x
Riondet, 2000, Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli, J Bacteriol, 182, 620, 10.1128/JB.182.3.620-626.2000
Rodkey, 1959, Oxidation–reduction potentials of the triphosphopyridine nucleotide system, J Biol Chem, 234, 677, 10.1016/S0021-9258(18)70268-8
Sauer, 2004, The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli, J Biol Chem, 279, 6613, 10.1074/jbc.M311657200
Schafer, 2001, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free RadicBiol Med, 30, 1191, 10.1016/S0891-5849(01)00480-4
Shen, 2011, Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli, Appl Environ Microbiol, 77, 2905, 10.1128/AEM.03034-10
Shi, 2005, Identification of ATP-NADH kinases isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae, FEBS J, 272, 3337, 10.1111/j.1742-4658.2005.04749.x
Singh, 2009, Genes restoring redox balance in fermentation-deficient E. coli NZN111, Metab Eng, 11, 347, 10.1016/j.ymben.2009.07.002
Sridhar, 1999, Influence of redox potential on product distribution in Clostridium thermosuccinogenes, Appl Biochem Biotechnol, 82, 91, 10.1385/ABAB:82:2:91
Thrash, 2008, Review: direct and indirect electrical stimulation of microbial metabolism, Environ Sci Technol, 42, 3921, 10.1021/es702668w
Vasconcelos, 1994, Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol, J Bacteriol, 176, 1443, 10.1128/jb.176.5.1443-1450.1994
Vemuri, 2006, Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio, Appl Environ Microbiol, 72, 3653, 10.1128/AEM.72.5.3653-3661.2006
Vemuri, 2007, Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae, Proc Natl Acad Sci U S A, 104, 2402, 10.1073/pnas.0607469104
Verho, 2003, Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae, Appl Environ Microbiol, 69, 5892, 10.1128/AEM.69.10.5892-5897.2003
Wang, 2011, Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode, Environ Sci Technol, 45, 10186, 10.1021/es202356w
Wang, 2012, Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity, Appl Microbiol Biotechnol, 93, 1021, 10.1007/s00253-011-3570-2
Wietzke, 2012, The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum, Appl Microbiol Biotechnol, 96, 749, 10.1007/s00253-012-4112-2
Yerushalmi, 1985, Effect of increased hydrogen partial pressure on the acetone–butanol fermentation by Clostridium acetobutylicum, Appl Microbiol Biotechnol, 22, 103, 10.1007/BF00250028
Yu, 2007, The influence of controlling redox potential on ethanol production by Saccharomyces cerevisiae, Chin J Biotechnol, 23, 878, 10.1016/S1872-2075(07)60054-5
Yu, 2011, Metabolic engineering of Clostridium tyrobutyricum for n-butanol production, Metab Eng, 13, 373, 10.1016/j.ymben.2011.04.002