Redox interactions between structurally different alkylresorcinols and iron(III) in aqueous media: frozen-solution 57Fe Mössbauer spectroscopic studies, redox kinetics and quantum chemical evaluation of the alkylresorcinol reactivities

Alexander A. Kamnev1, R. L. Dykman1, Krisztina Kovács2, А. Н. Панкратов3, Anna V. Tugarova1, Z. Homonnay2, Э. Кузманн2
1Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
2Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
3Division of Analytical Chemistry and Chemical Ecology, Institute of Chemistry, N.G. Chernyshevskii Saratov State University, Saratov, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Stevens AM, Schuster M, Rumbaugh KP (2012) Working together for the common good: cell–cell communication in bacteria. J Bacteriol 194:2131–2141

Stacy AR, Diggle SP, Whileley M (2012) Rules of engagement: defining bacterial communication. Curr Opin Microbiol 15:155–161

Mangwani N, Dash HR, Chauhan A, Das S (2012) Bacterial quorum sensing: functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol 22:215–227

Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646

Kamnev AA (2008) Chapter 13: Metals in soil versus plant–microbe interactions: biotic and chemical interferences. In: Barka EA, Clement C (eds) Plant–microbe interactions. Research Signpost, Trivandrum, pp 291–318

Pracht J, Boenigk J, Isenbeck-Schröter M, Keppler F, Schöler HF (2001) Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere 44:613–619

Kamnev AA, Kuzmann E (1997) Mössbauer spectroscopic evidence for the reduction of iron(III) by anthranilic acid in aqueous solution. Polyhedron 16:3353–3356

Kamnev AA, Kuzmann E (1997) Mössbauer spectroscopic study of the interaction of indole-3-acetic acid with iron(III) in aqueous solution. Biochem Mol Biol Int 41:575–581

Kovács K, Kamnev AA, Mink J, Németh Cs, Kuzmann E, Megyes T, Grósz T, Medzihradszky-Schweiger H, Vértes A (2006) Mössbauer, vibrational spectroscopic and solution X-ray diffraction studies of the structure of iron(III) complexes formed with indole-3-alkanoic acids in acidic aqueous solutions. Struct Chem 17:105–120

Kovács K, Sharma VK, Kamnev AA, Kuzmann E, Homonnay Z, Vértes A (2008) Water and time dependent interaction of iron(III) with indole-3-acetic acid. Struct Chem 19:109–114

Kamnev AA, Kovács K, Kuzmann E, Vértes A (2009) Application of Mössbauer spectroscopy for studying chemical effects of environmental factors on microbial signalling: redox processes involving iron(III) and some microbial autoinducer molecules. J Mol Struct 924–926:131–137

Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

Johnson DB, Kanao T, Hedrich S (2012) Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol 3:96. doi: 10.3389/fmicb.2012.00096

Bolan NS, Hedley MJ, White RE (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134:53–63

Uroz S, Calvaruso C, Turpault R-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387

Chapman PJ, Ribbons DW (1976) Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida. J Bacteriol 125:975–984

Kozubek A, Tyman JHP (1999) Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 99:1–25

Stasiuk M, Kozubek A (2010) Biological activity of phenolic lipids. Cell Mol Life Sci 67:841–860

Sampietro DA, Belizán MME, Apud GR, Juarez JH, Vattuone MA, Catalán CAN (2013) Chapter 10: Alkylresorcinols: chemical properties, methods of analysis and potential uses in food, industry and plant protection. In: Céspedes CL, Sampietro DA, Seigler DS, Rai M (eds) Natural antioxidants and biocides from wild medicinal plants. CAB International, Wallingford, pp 148–166

Mulyukin AL, Filippova SN, Kozlova AN, Surgucheva NA, Bogdanova TI, Tsaplina IA, El’-Registan GI (2006) Non-species-specific effects of unacylated homoserine lactone and hexylresorcinol, low molecular weight autoregulators, on the growth and development of bacteria. Microbiology (Mosc) (Engl Transl) 75:405–414

Nikolaev YuA, Mulyukin AL, Stepanenko IYu, El’-Registan GI (2006) Autoregulation of stress response in microorganisms. Microbiology (Mosc) (Engl Transl) 75:420–426

El’-Registan GI, Mulyukin AL, Nikolaev YuA, Suzina NE, Gal’chenko VF, Duda VI (2006) Adaptogenic functions of extracellular autoregulators of microorganisms. Microbiology (Moscow) (Engl Transl) 75:380–389

Revina AA, Larionov OG, Kochetova MV, Lutsik TK, El’-Registan GI (2003) Spectrophotometric and chromatographic study of radiolysis products of aerated aqueous solutions of alkylresorcinols. Russ Chem Bull 52:2386–2392

Vértes A, Nagy D (eds) (1990) Mössbauer spectroscopy of frozen solutions. Akad. Kiadó, Budapest. Russian edition (Perfiliev YuD, translation editor). Mir, Moscow (1998)

Krebs C, Price JC, Baldwin J, Saleh L, Green MT, Bollinger JM Jr (2005) Rapid freeze-quench 57Fe Mössbauer spectroscopy: monitoring changes of an iron-containing active site during a biochemical reaction. Inorg Chem 44:742–757

Krebs C, Bollinger JM Jr (2009) Freeze-quench 57Fe Mössbauer spectroscopy: trapping reactive intermediates. Photosynth Res 102:295–304

Lam SW, Chiang K, Lim TM, Amal R, Low GK-C (2005) The role of ferric ion in the photochemical and photocatalytic oxidation of resorcinol. J Catal 234:292–299

Klencsár Z, Kuzmann E, Vértes A (1996) User-friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem Articles 210:105–118

Kohn W (1999) Nobel Lecture: electronic structure of matter—wave functions and density functionals. Rev Mod Phys 71:1253–1266

Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, Toronto

Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452. doi: 10.1021/jp0734474

Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millan JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malich DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzales C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andreas JL, Head-Gordon M, Reploge ES, Pople JA (2003) Gaussian 03, revision B.03. Gaussian, Inc., Pittsburgh

Pankratov AN (2007) Electronic structure and reactivity of inorganic, organic, organoelement and coordination compounds: an experience in the area of applied quantum chemistry. In: Kaisas MP (ed) Quantum chemistry research trends. Nova Science Publishers, Inc., New York, pp 57–125

Froimowitz M (1993) HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques 14:1010–1013

Stewart JJP (1989) Optimization of parameters for semiempirical methods. I. Method. J Comput Chem 10:209–220

Stewart JJP (1989) Optimization of parameters for semiempirical methods. II. Applications. J Comput Chem 10:221–264

Gütlich P, Bill E, Trautwein A (2011) Mössbauer spectroscopy and transition metal chemistry. Springer, Berlin

Kuzmann E, Homonnay Z, Nagy S, Nomura K (2010) Mössbauer spectroscopy. In: Vértes A, Nagy S, Klencsár Z (eds) Handbook of nuclear chemistry, vol 2., Elements and isotopes: formation, transformation, distribution. Springer, Dordrecht, pp 3–65

Singh US, Scannell RT, An H, Carter BJ, Hecht SM (1995) DNA cleavage by di- and trihydroxyalkylbenzenes. Characterization of products and the roles of O2, Cu(II), and alkali. J Am Chem Soc 117:12691–12699

Dykstra CE, Frenking G, Kim KS, Scuseria GE (2011) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, 1308 pp

Gurvich LV, Karachevtsev GV, Kondratyev VN, Lebedev YuA, Medvedev VA, Potapov VK, Khodeev YuS (1974) Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu („Energies of disruption of chemical bonds. Ionisation potentials and affinity to the electron“, in Russ.). Nauka, Moscow, 351 pp

Canevari TC, Arenas LT, Landers R, Custodio R, Gushikem Y (2013) Simultaneous electroanalytical determination of hydroquinone and catechol in the presence of resorcinol at an SiO2/C electrode spin-coated with a thin film of Nb2O5. Analyst 138:315–324