Rong đỏ Palmaria palmata—tốc độ sinh trưởng và hiệu suất quang hợp dưới điều trị CO2 cao

Springer Science and Business Media LLC - Tập 29 - Trang 381-393 - 2016
Stefan Sebök1, Werner B. Herppich2, Dieter Hanelt1
1Department of Cell Biology and Phycology, University of Hamburg, Hamburg, Germany
2Leibniz Institute for Agricultural Engineering Potsdam-Bornim e.V, Potsdam, Germany

Tóm tắt

Rong macroalgae biển cung cấp một giải pháp khả thi để giảm phát thải CO2 bằng cách cố định CO2 thành sinh khối tảo và do đó cung cấp một nguồn năng lượng tái tạo. Tảo đỏ lâu năm Palmaria palmata đã được nuôi cấy và cung cấp với nồng độ CO2 tăng dần bắt đầu từ 22 μmol kg−1 (pH 8.53) đến 9770 μmol kg−1 (pH 6.04). Các thí nghiệm đã diễn ra trong các khoảng thời gian kiểm tra là 28 ngày, 7 ngày và 2 giờ để kiểm tra ảnh hưởng có thể có của các thời gian điều trị khác nhau. Năng suất sinh khối trong 28 ngày cho thấy tỷ lệ sản xuất tăng lên, nhưng liên tục giảm khi nồng độ CO2 tăng. Sau 7 ngày, năng suất thấp hơn so với mẫu đối chứng, cho thấy một pha trì hoãn hoặc giai đoạn thích ứng cần thiết đối với nồng độ CO2 tăng cao hơn 7 ngày. Về ảnh hưởng đối với tỷ lệ vận chuyển electron tối đa (ETRmax), hiệu suất thu ánh sáng (alpha) và bão hòa ánh sáng của quá trình vận chuyển electron quang hợp (Ek), một ảnh hưởng kích thích đã được xác định, với ảnh hưởng trở nên rõ ràng hơn khi thời gian thử nghiệm ngắn hơn. Việc điều trị với nồng độ CO2 cao trong 28 ngày đã dẫn đến sự giảm hiệu suất quang hóa học (Y(II)) và điều chỉnh sự tiêu tán năng lượng không quang hóa học (Y(NPQ)). Ngược lại, thời gian điều trị 7 ngày chủ yếu tăng cường sự tắt quang hóa học, trong khi điều trị 2 giờ dẫn đến sự tăng đáng kể trong tắt quang hóa học và sự giảm đáng kể trong tiêu tán năng lượng không quang hóa học không được điều chỉnh. Do đó, nồng độ CO2 cao trong một khoảng thời gian kéo dài đã can thiệp rõ rệt hơn vào khả năng tắt huỳnh quang của P. palmata.

Từ khóa

#tảo biển #rong đỏ #Palmaria palmata #CO2 #hiệu suất quang hợp #năng suất sinh khối

Tài liệu tham khảo

Allen E, Wall DM, Herrmann C, Xia A, Murphy JD (2015) What is the gross energy yield of third generation gaseous biofuel sourced from seaweed? Energy 81:352–360 Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms and their regulation. Funct Plant Biol 29:335–347 Bidwell RGS, McLachlan J, Lloyd NDH (1985) Tank cultivation of Irish Moss Chondrus crispus Stackh. Bot Mar 28:87–97 Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol 91:542–551 Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production processing and extractions of biofuels and coproducts. Renew Sust Energ Rev 14:557–577 Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield methane production and combustion. Bioresour Technol 102:2595–2604 Celis-Plá PSM, Hall-Spencer JM, Horta PA, Milazzo M, Korbee N, Cornwall CE, Figueroa FL (2015) Macroalgal responses to ocean acidification depend on nutrient and light levels. Front Mar Sci 2:26 Chen S, Beardall J, Gao K (2014) A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions. Biogeosciences 11:4829–4838 Chen B, Zou D, Ma J (2016) Interactive effects of elevated CO2 and nitrogen–phosphorus supply on the physiological properties of Pyropia haitanensis (Bangiales, Rhodophyta. J Appl Phycol 28:1235–1243 Chynoweth DP (2005) Colloquium Proceedings: Renewable biomethane from land and ocean energy crops and organic wastes. HortSci 40:283–286 De Paula Silva PH, de Nys R, Paul NA (2012) Seasonal growth dynamics and resilience of the green tide alga Cladophora coelothrix in high-nutrient tropical aquaculture. Aquacult Environ Interact 2:253–266 De Paula Silva PH, Paul NA, De Nys R, Mata L (2013) Enhanced production of green tide algal biomass through additional carbon supply. PLoS One 8:e81164 Demetropoulos CL, Langdon CJ (2004a) Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: effects of stocking density, light, salinity and temperature. Aquaculture 235:471–488 Demetropoulos CL, Langdon CJ (2004b) Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: nitrogen phosphorus and trace metal nutrition. Aquaculture 235:433–455 Demetropoulos CL, Langdon CJ (2004c) Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: effects of seawater exchange pH and inorganic carbon concentration. Aquaculture 235:457–470 Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res A 37:755–766 Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4:157–175 Engle CR, Balakrishnan R, Hanson TR, Molnar JJ (1997) Economic considerations. In: Egna HS, Boyd CE (eds) Dynamics of pond aquaculture. CRC Press, New York, pp. 377–395 Enríquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences - methods and applications. Springer, Dordrecht, pp. 187–208 Ernst DH (2000) Aqua Farm: simulation and decision-support software for aquaculture facility design and management planning. Dissertation, Oregon State University Evans F, Langdon CJ (2000) Co-culture of dulse Palmaria mollis and red abalone Haliotis rufescens under limited flow conditions. Aquaculture 185:137–158 Falk S, Palmqvist K (1992) Photosynthetic light utilization efficiency, photosystem II heterogeneity, and fluorescence quenching in Chlamydomonas reinhardtii during the induction of the CO2-concentrating mechanism. Plant Physiol 100:685–691 Figueroa FL, Barufi JB, Malta EJ, Conde-Álvarez R, Nitschke U, Arenas F, Mata M, Connan S, Abreu MH, Marquardt R, Vaz-Pinto F, Konotchick T, Celis-Plá PSM, Hermoso M, Ordoñez G, Ruiz E, Flores P, de los Ríos J, Kirke D, Chow F, Nassar CAG, Robledo D, Pérez-Ruzafa A, Bañares-España E, Altamirano M, Jiménez C, Korbee N, Bischof K, Stengel DB (2014a) Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition. Aquat Biol 22:177–193 Figueroa FL, Malta EJ, Bonomi-Barufi J, Conde-Álvarez R, Nitschke U, Arenas F (2014b) Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition. Aquat Biol 22:177–193 Friedlander M, Levy I (1995) Cultivation of Gracilaria in outdoor tanks and ponds. J Appl Phycol 7:315–324 Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production – an overview. Biofuels Bioprod Biorefin 4:692–704 Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60 Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3:355–362 Gao K, Aruga Y, Asada K, Kiyohara M (1993) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol 5:563–571 Garcia-Sanchez MJ, Fernandez JA, Niell FX (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61 Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connel SD, Dupont S, Fabricius KE, Hall-Spencer JH, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan ML, Widdicombe S, Harley CD (2015) Ocean acidification through the lens of ecological theory. Ecology 96:3–15 Gellenbeck KW, Kraemer GP, McMurtry LA, Chapman DJ (1988) An experimental culture system for macroalgae and other aquatic life. Aquaculture 74:385–391 Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol 56:99–131 Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70 Hafting JT, Critchley AT, Cornish ML, Hubley SA, Archibald AF (2011) On-land cultivation of functional seaweed products for human usage. J Appl Phycol 24:385–392 Hahn H, Krautkremer B, Hartmann K, Wachendorf M (2014) Review of concepts for a demand-driven biogas supply for flexible power generation. Renew Sust Energ Rev 29:383–393 Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of arctic macroalgae in the field. J Photochem Photobiol B 38:40–47 Herppich WB, Herppich M, von Willert DJ (1998a) Ecophysiological investigations on plants of the genus Plectranthus (Lamiaceae). Influence of environment and leaf age on CAM gas exchange and leaf water relations in Plectranthus marrubioides Benth. Flora 193:99–109 Herppich WB, Herppich M, Tüffers A, von Willert DJ, Midgley GF, Veste M (1998b) Photosynthetic responses to CO2 concentration and photon fluence rates in the CAM-cycling plant Delosperma tradescantioides (Mesembryanthemaceae). New Phytol 138:433–440 Herppich WB, Flach BM-T, von Willert DJ, Herppich M (1997) Field investigations in Welwitschia mirabilis during a severe drought. II. Influence of leaf age, leaf temperature and irradiance on photosynthesis and photoinhibition. Flora 192:65–174 Hofmann LC, Bischof K, Baggini C, Johnson A, Koop-Jakobsen K, Teichberg M (2015) CO2 and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Oecologia 177:1157–1169 Huguenin JE (1976) An examination of problems and potentials for future large-scale intensive seaweed culture systems. Aquaculture 9:313–342 Israel A, Gavrieli J, Glazer A, Friedlander M (2005) Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture 249:311–316 Israel A, Levy I, Friedlander M (2006) Experimental tank cultivation of Porphyra in Israel. J Appl Phycol 18:235–240 Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547 Johnston AM, Maberly SC, Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae. Oecologia 92:317–326 Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124 Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application. Notes 1:27–35 Koch M, Bowes G, Ross C, Zhang X (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132 Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218 Kübler JE, Raven JA (1995) The interaction between inorganic carbon acquisition and light supply in Palmaria palmata (Rhodophyta). J Phycol 31:369–375 Le Gall L, Pien S, Rusig AM (2004) Cultivation of Palmaria palmata (Palmariales, Rhodophyta) from isolated spores in semi-controlled conditions. Aquaculture 229:181–191 Lewis E, Wallace D (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, Oak Ridge Li W, Gao K, Beardall J (2012) Interactive effects of ocean acidification and nitrogen limitation on the diatom Phaeodactylum tricornutum. PLoS One 7:e51590 Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820 Lüning K, Pang S (2002) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119 Menendez M, Martınez M, Comin FA (2001) A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. J Exp Mar Biol Ecol 256:123–136 Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461 Morgan KC, Simpson FJ (1981a) The cultivation of Palmaria palmata. Effect of light intensity and nitrate supply on growth and chemical composition. Bot Mar 24:273–277 Morgan KC, Simpson FJ (1981b) The cultivation of Palmaria palmata. Effect of high concentrations of nitrate and ammonium on growth and nitrogen uptake. Aquat Bot 11:167–171 Morgan KC, Shacklock PF, Simpson FJ (1980) Some aspects of the culture of Palmaria palmata in greenhouse tanks. Bot Mar 23:765–770 Mueller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566 Murru M, Sandgren DC (2004) Habitat matters for inorganic carbon acquisition in 38 species of red macroalgae (Rhodophyta) from Puget Sound Washington, USA. J Phycol 40:837–845 Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56 Nygård CA, Dring MJ (2008) Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. Eur J Phycol 43:253–262 Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262 Olischläger M, Wiencke C (2013) Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). J Exp Bot 64:5587–5597 Pang S, Lüning K (2004) Tank cultivation of the red alga Palmaria palmata: effects of intermittent light on growth rate, yield and growth kinetics. J Appl Phycol 16:93–99 Pang S, Lüning K (2006) Tank cultivation of the red alga Palmaria palmata: year-round induction of tetrasporangia, tetraspore release in darkness and mass cultivation of vegetative thalli. Aquaculture 252:20–30 Pang S, Gomez I, Lüning K (2001) The red macroalga Delesseria sanguinea as a UVB-sensitive model organism: selective growth reduction by UVB in outdoor experiments and rapid recording of growth rate during and after UV pulses. Eur J Phycol 36:207–216 Papazi A, Makridis P, Divanach P, Kotzabasis K (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol Plant 132:338–349 Poeschl M, Ward S, Owende P (2010) Prospects for expanded utilization of biogas in Germany. Renew Sust Energ Rev 14:1782–1797 Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104/105:77–97 Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energy 35:14–22 Roleda MY, Hanelt D, Wiencke C (2006) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88:311–322 Roleda MY, Morris JN, McGraw CM, Hurd CL (2012) Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob Chang Biol 18:854–864 Sagert S, Schubert H (2000) Acclimation of Palmaria palmata (Rhodophyta) to light intensity: comparison between artificial and natural light fields. J Phycol 36:1119–1128 Sarker M, Bartsch I, Olischläger M, Gutow L, Wiencke C (2012) Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Bot Mar 56:63–74 Sastre R, Posten C (2010) The variety of microalgae applications as a renewable resource. Chem Ing Tech 82:1925–1939 Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43 Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulated fluorometer. Photosynth Res 10:51–62 Shi D, Xu Y, Morel FMM (2009) Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth. Biogeosciences 6:1199–1207 Suárez-Àlvarez S, Gómez-Pinchetti JL, García-Reina G (2011) Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales Rhodophyta). J Appl Phycol 24:815–823 Takahashi T, Williams RT, Bos DL (1982) Carbonate Chemistry. In: Broecker WS, Spence DW, Craig H (eds) GEOSECS Pacific Expedition Hydrographic Data, Vol. 3, pp 77–82 Titlyanov EA, Titlyanova TV (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36:227–242 Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338 Wu HY, Zou DH, Gao KS (2008) Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macroalgae. Sci China Ser C 51:1144–1150. Xu Z, Zou D, Gao K (2010) Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta). Bot Mar 53:123–129 Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158 Zou D, Gao K (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517 Zou D, Gao K (2014) The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobata (Chlorophyta). Phycologia 53:86–94 Zou D, Gao K, Luo H (2011) Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J Phycol 47:87–97