Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tái chế ciprofloxacin hết hạn trong dung dịch mưa acid tổng hợp (SAR) như một chất ức chế ăn mòn thân thiện với môi trường cho đồng: đánh giá lý thuyết và thực nghiệm
Tóm tắt
Kháng sinh Ciprofloxacin (CIPRO) đã được nghiên cứu như một chất ức chế mới cho sự ăn mòn đồng trong dung dịch mưa acid tổng hợp (SAR) sử dụng phương pháp Mất Khối Lượng (ML) như một phương pháp hóa học, Phân cực động lực học (PDP) và Quang phổ điện hóa trở kháng (EIS) như các kỹ thuật điện hóa. Trong sự hiện diện của 600 ppm kháng sinh CIPRO, tỷ lệ bảo vệ đạt 90.1% theo kỹ thuật EIS. Đặc điểm hấp phụ nhiệt động học và kích hoạt đã được đánh giá và mô tả. Áp sút CIPRO trên bề mặt Cu trong dung dịch SAR là hấp phụ vật lý và tuân theo isotherm Langmuir. Theo các đường cong PDP, loại thuốc được nghiên cứu phục vụ như một chất ức chế loại hỗn hợp. Thuốc này đã ngăn chặn sự ăn mòn bằng cách bám vào bề mặt kim loại, điều này được chứng minh bằng Kính hiển vi lực nguyên tử (AFM), Kính hiển vi điện tử quét - Phân tích năng lượng phổ X-quang (SEM–EDX), và Quang phổ hồng ngoại Mega biến đổi Fourier (FTIR). Các kết quả từ Lý thuyết chức năng mật độ (DFT) và mô phỏng Monte Carlo (MC) bổ sung cho các kết quả thực nghiệm. Các hiệu suất ức chế thu được qua các phương pháp khác nhau là nhất quán với nhau.
Từ khóa
#Ciprofloxacin #chất ức chế ăn mòn #mưa acid tổng hợp #hấp phụ #điện hóaTài liệu tham khảo
Feng L, Yang H, Wang F (2011) Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca (OH) 2 solution. Electrochim Acta 58:427–436. https://doi.org/10.1016/j.electacta.2011.09.063
Zhang J, Qiao G, Hu S, Yan Y, Ren Z, Yu L (2011) Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups. Corros Sci 53(1):147–152. https://doi.org/10.1016/j.corsci.2010.09.007
Adeloju S, Hughes H (1986) The corrosion of copper pipes in high chloride-low carbonate mains water. Corros Sci 26(10):851–870. https://doi.org/10.1016/0010-938X(86)90068-5
Odermatt A, Suter H, Krapf R, Solioz M (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268(17):12775–12779. https://doi.org/10.1016/S0021-9258(18)31455-8
Sedik A, Athmani S, Saoudi A, Ferkous H, Ribouh N, Lerari D et al (2022) Experimental and theoretical insights into copper corrosion inhibition by protonated amino-acids. RSC Adv 12(36):23718–23735. https://doi.org/10.1039/D2RA03535A
Dueke-Eze CU, Madueke NA, Iroha NB, Maduelosi NJ, Nnanna LA, Anadebe VC et al (2022) Adsorption and inhibition study of N-(5-methoxy-2-hydroxybenzylidene) isonicotinohydrazide Schiff base on copper corrosion in 3.5% NaCl. Egypt J Pet 31(2):31–7. https://doi.org/10.1016/j.ejpe.2022.05.001
El Ibrahimi B (2021) Sustainable corrosion inhibitors for copper and its alloys. Sustain Corros Inhibit 107:175. https://doi.org/10.2141/9781644901496-7
Rooney DT, Todd Castello N, Cibulsky M, Abbott D, Xie D (2003) Materials characterization of the effect of mechanical bending on area array package interconnects. Microelectron Int 20(1):34–42. https://doi.org/10.1016/S0026-2714(03)00193-8
Fateh A, Aliofkhazraei M, Rezvanian A (2020) Review of corrosive environments for copper and its corrosion inhibitors. Arab J Chem 13(1):481–544. https://doi.org/10.1016/j.arabjc.2017.05.021
Mihajlović MP, Antonijević MM (2015) Copper corrosion inhibitors. Period 2008–2014. A review. Int J Electrochem Sci 10(2):1027–53
Abbasov V, Abd El-Lateef HM, Aliyeva L, Qasimov E, Ismayilov I, Khalaf MM (2013) A study of the corrosion inhibition of mild steel C1018 in CO2-saturated brine using some novel surfactants based on corn oil. Egypt J Pet 22(4):451–470. https://doi.org/10.1016/j.ejpe.2013.11.002
Sahu BC (2023). Organic Corrosion Inhibitors. https://doi.org/10.5772/intechopen.109523
Petrović Mihajlović MB, Tasić ŽZ, Radovanović MB, Simonović AT, Antonijević MM (2022) Electrochemical analysis of the influence of purines on copper, steel and some other metals corrosion. Metals 12(7):1150. https://doi.org/10.3390/met12071150
Murungi PI, Sulaimon AA (2022) Ideal corrosion inhibitors: a review of plant extracts as corrosion inhibitors for metal surfaces. Corros Rev 40(2):127–136. https://doi.org/10.1515/corrrev-2021-0051
El-Shamy AM, Mouneir SM (2023) Medicinal materials as eco-friendly corrosion inhibitors for industrial applications: a review. J Bio Tribo-Corros 9(1):3. https://doi.org/10.1007/s40735-022-00714-9
Tanwer S, Shukla SK (2022) Recent advances in the applicability of drugs as corrosion inhibitor on metal surface: a review. Curr Res Green Sustain Chem 5:100227. https://doi.org/10.1016/j.crgsc.2021.100227
Fouda AE, El-Dossoki F, Hamed E, El-Hossiany A (2022) Inhibition efficiency of erdosteine drug for 304l stainless steel corrosion and its solvation thermodynamic parameters. Egypt J Chem 65(13):455–75. https://doi.org/10.21608/EJCHEM.2022.131748.5806
Chen L, Shi Y, Xu S, Xiong J, Li H, Gao F et al (2023) Norfloxacin skeleton-included dendritic molecules as corrosion inhibitors on mild steel in hydrochloric acid: from experiments to molecular dynamics simulation. J Electrochem Soc 170(6):065503. https://doi.org/10.1149/1945-7111/acd810
Abdullahi M , Usmana AK , Dan’azumia K , Umara AU , Ja’afar Yusufa AMS (2022) Investigation of some expired antibiotic drugs: Effect on the corrosion inhibition of mild steel in 0.1 M HCl medium via experimental and molecular dynamics simulation. https://doi.org/10.2234/CRL.2022.313874.1130.
Thanapackiama P, Subramaniama EP, Hemalathaa KV, Gayathria B (2019) Electrochemical study of inhibition of corrosion of copper by ofloxacin in acid media. J Environ Nanotechnol 8(1):75–88. https://doi.org/10.13074/jent.2019.03.191349
Fouda A, Eissa M, El-Hossiany A (2018) Ciprofloxacin as eco-friendly corrosion inhibitor for carbon steel in hydrochloric acid solution. Int J Electrochem Sci 13:11096–112. https://doi.org/10.20964/2018.11.86
Shi Y, Chen L, Zhang S, Li H, Gao F (2023) New branched benign compounds including double antibiotic scaffolds: synthesis, simulation and adsorption for anticorrosion effect on mild steel. Front Chem Sci Eng 17(2):167–182. https://doi.org/10.1007/s11705-022-2199-2
Razli KS, Umetnem NBV (2011) Corrosion stability of different bronzes in simulated Urban rain. Mater Tehnol 45(6):585–591
Tasić ZZ, Mihajlović MBP, Simonović AT, Radovanović MB, Antonijević MM (2019) Ibuprofen as a corrosion inhibitor for copper in synthetic acid rain solution. Sci Rep 9(1):14710. https://doi.org/10.1038/s41598-019-51299-2
El-Sayed NS, Kamel S (2022) Polysaccharides-based injectable hydrogels: preparation, characteristics, and biomedical applications. Colloids Interfaces 6(4):78. https://doi.org/10.3390/colloids6040078
Obot I, Macdonald D, Gasem Z (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corros Sci 99:1–30. https://doi.org/10.1016/j.corsci.2015.01.037
Khaled K, Fadl-Allah SA, Hammouti B (2009) Some benzotriazole derivatives as corrosion inhibitors for copper in acidic medium: Experimental and quantum chemical molecular dynamics approach. Mater Chem Phys 117(1):148–155. https://doi.org/10.1016/j.matchemphys.2009.05.043
Fouda A, Khalil E, El-Mahdy G, Shaban M, Mohammed A, Abdelsatar N (2023) Synthesis and characterization of novel acrylamide derivatives and their use as corrosion inhibitors for carbon steel in hydrochloric acid solution. Sci Rep 13(1):3519. https://doi.org/10.1038/s41598-023-30574-3
Fouda A, Shalabi K, E-Hossiany A, (2016) Moxifloxacin antibiotic as green corrosion inhibitor for carbon steel in 1 M HCl. Journal of Bio-and Tribo-Corrosion 2:1–13. https://doi.org/10.1007/s40735-016-0048-x
Mourya P, Singh P, Tewari A, Rastogi R, Singh M (2015) Relationship between structure and inhibition behaviour of quinolinium salts for mild steel corrosion: experimental and theoretical approach. Corros Sci 95:71–87. https://doi.org/10.1016/j.corsci.2015.02.034
Oguzie EE (2006) Studies on the inhibitive effect of Occimum viridis extract on the acid corrosion of mild steel. Mater Chem Phys 99(2–3):441–446. https://doi.org/10.1016/j.matchemphys.2005.11.018
Abd El Rehim SS, Hassan HH, Amin MA (2003) The corrosion inhibition study of sodium dodecyl benzene sulphonate to aluminium and its alloys in 10 M HCl solution. Mater Chem Phys 78(2):337–48. https://doi.org/10.1016/S0254-0584(01)00602-2
Oguzie E (2005) Inhibition of acid corrosion of mild steel by Telfaria occidentalis extract. Pigment & Resin Technology.
Farag AA, Hegazy MA (2013) Synergistic inhibition effect of potassium iodide and novel Schiff bases on X65 steel corrosion in 0.5 M H2SO4. Corros Sci 74:168–177
Zarrouk A, Hammouti B, Zarrok H, Al-Deyab S, Messali M (2011) Temperature effect, activation energies and thermodynamic adsorption studies of L-cysteine methyl ester hydrochloride as copper corrosion inhibitor in nitric acid 2M. Int J Electrochem Sci 6(12):6261–6274
Donahue FM, Nobe K (1965) Theory of organic corrosion inhibitors: adsorption and linear free energy relationships. J Electrochem Soc 112(9):886. https://doi.org/10.1149/1.2423723
Moretti G, Guidi F, Grion G (2004) Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid. Corros Sci 46(2):387–403. https://doi.org/10.1016/S0010-938X(03)00150-1
Prabakaran M, Vadivu K, Ramesh S, Periasamy V (2014) Corrosion protection of mild steel by a new phosphonate inhibitor system in aqueous solution. Egypt J Pet 23(4):367–377. https://doi.org/10.1016/j.ejpe.2014.09.004
Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system. Appl Surf Sci 199(1–4):83–89. https://doi.org/10.1016/S0169-4332(02)00546-9
Tang L, Mu G, Liu G (2003) The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid. Corros Sci 45(10):2251–62. https://doi.org/10.1016/S0010-938X(03)00046-5
Beda R, Niamien P, Bilé EA, Trokourey A (2017) Inhibition of aluminium corrosion in 1.0 M HCl by caffeine: experimental and DFT studies. Adv Chem 2017:6975248
Fouda AE-AS, Abd El-Maksoud SA, El-Sayed EH, Elbaz HA, Abousalem AS (2021) Experimental and surface morphological studies of corrosion inhibition on carbon steel in HCl solution using some new hydrazide derivatives. RSC Adv 11(22):13497–13512. https://doi.org/10.1039/D1RA01405F
El-Katori EE, Al-Mhyawi S (2019) Assessment of the Bassia muricata extract as a green corrosion inhibitor for aluminum in acidic solution. Green Chem Lett Rev 12(1):31–48. https://doi.org/10.1080/17518253.2019.1569728
Ismail KM (2007) Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions. Electrochim Acta 52(28):7811–7819. https://doi.org/10.1016/j.electacta.2007.02.053
Hameed RSA, Aljohani MM, Essa AB, Khaled A, Nassar AM, Badr MM et al (2021) Electrochemical techniques for evaluation of expired megavit drugs as corrosion inhibitor for steel in hydrochloric acid. Int J Electrochem Sci 16:210446
Zhang Q, Zhu Z, Liu P, Zhang J, Cao F (2019) Corrosion electrochemical kinetic study of copper in acidic solution using scanning electrochemical microscopy. J Electrochem Soc 166(13):C401. https://doi.org/10.1149/2.0061913jes
El-Sayed A-R, El-Hendawy MM, El-Mahdy MS, Hassan FS, Mohamed AE (2023) The inhibitive action of 2-mercaptobenzothiazole on the porosity of corrosion film formed on aluminum and aluminum–titanium alloys in hydrochloric acid solution. Sci Rep 13(1):4812. https://doi.org/10.1038/s41598-023-31795-2
El-Lateef HMA, El-Sayed A-R, Mohran HS, Shilkamy HAS (2019) Corrosion inhibition and adsorption behavior of phytic acid on Pb and Pb–In alloy surfaces in acidic chloride solution. Int J Ind Chem 10:31–47. https://doi.org/10.1007/s40090-019-0169-4
Caldona EB, Zhang M, Liang G, Hollis TK, Webster CE, Smith DW Jr et al (2021) Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds. J Electroanal Chem 880:114858. https://doi.org/10.1016/j.jelechem.2020.114858
Atta AM, El-Mahdy GA, Al-Lohedan HA, Al-Hussain SA (2015) Application of eco-friendly magnetite nanoparticles coated with rosin amidoxime as corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. Int J Electrochem Sci 10:2621–2633
Madkour LH, Elshamy I (2016) Experimental and computational studies on the inhibition performances of benzimidazole and its derivatives for the corrosion of copper in nitric acid. Int J Ind Chem 7:195–221. https://doi.org/10.1007/s40090-015-0070-8
Chaitra TK, Mohana KNS, Tandon HC (2015) Thermodynamic, electrochemical and quantum chemical evaluation of some triazole Schiff bases as mild steel corrosion inhibitors in acid media. J Mol Liq 211:1026–1038. https://doi.org/10.1016/j.molliq.2015.08.031
El-Sayed A-R, Mohran HS, Abd El-Lateef HM (2011) Inhibitive action of ferricyanide complex anion on both corrosion and passivation of zinc and zinc–nickel alloy in the alkaline solution. J Power Sources 196(15):6573–6582. https://doi.org/10.1016/j.jpowsour.2011.03.057
Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8(3):925–936
Jamesh M, Kumar S, Narayanan TSNS (2011) Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution–Long term evaluation by EIS. Corros Sci 53(2):645–654
Feliu S Jr (2020) Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. Metals 10(6):775
Amin MA, Khaled K (2010) Copper corrosion inhibition in O2-saturated H2SO4 solutions. Corros Sci 52(4):1194–1204. https://doi.org/10.1016/j.corsci.2009.12.035
Alimohammadi M, Ghaderi M, Ramazani SAA, Mahdavian M (2023) Falcaria vulgaris leaves extract as an eco-friendly corrosion inhibitor for mild steel in hydrochloric acid media. Sci Rep 13(1):3737. https://doi.org/10.1038/s41598-023-30571-6
Li C-c, Guo X-y, Shen S, Song P, Xu T, Wen Y et al (2014) Adsorption and corrosion inhibition of phytic acid calcium on the copper surface in 3 wt% NaCl solution. Corros Sci 83:147–154. https://doi.org/10.1016/j.corsci.2014.02.001
Wei N, Jiang Y, Liu Z, Ying Y, Guo X, Wu Y et al (2018) 4-Phenylpyrimidine monolayer protection of a copper surface from salt corrosion. RSC Adv 8(14):7340–7349. https://doi.org/10.1039/C7RA12256J
Tao Z, Liu G, Li Y, Zhang R, Su H, Li S (2020) Electrochemical investigation of tetrazolium violet as a novel copper corrosion inhibitor in an acid environment. ACS Omega 5(9):4415–4423. https://doi.org/10.1021/acsomega.9b03475
Pilić Z, Martinović I (2019) Effect of Helichrysum italicum on the corrosion of copper in simulated acid rain solution. Chemical and Biochemical Engineering Quarterly 33(4):449–57. https://doi.org/10.15255/CABEQ.2019.1614
El-Sayed A-R, Mohamed AE, Hassan FS, El-Mahdy MS (2023) Influence of titanium additions to aluminum on the microhardness value and electrochemical behavior of synthesized aluminum-titanium alloy in solutions of HCl and H3PO4. J Mater Eng Perform 32(4):1760–1777. https://doi.org/10.1007/s11665-022-07248-8
Abdallah M, Zaafarany I, Al-Karanee S, Abd El-Fattah A (2012) Antihypertensive drugs as an inhibitors for corrosion of aluminum and aluminum silicon alloys in aqueous solutions. Arab J Chem 5(2):225–234. https://doi.org/10.1016/j.arabjc.2010.08.017
Al-Amiery AA, Kadhum AAH, Alobaidy AHM, Mohamad AB, Hoon PS (2014) Novel corrosion inhibitor for mild steel in HCl. Materials 7(2):662–672. https://doi.org/10.3390/ma7020662
Tao Z, Zhang S, Li W, Hou B (2010) Adsorption and corrosion inhibition behavior of mild steel by one derivative of benzoic− triazole in acidic solution. Ind Eng Chem Res 49(6):2593–2599. https://doi.org/10.1021/ie901774m
Muralidharan S, Phani K, Pitchumani S, Ravichandran S, Iyer S (1995) Polyamino-benzoquinone polymers: a new class of corrosion inhibitors for mild steel. J Electrochem Soc 142(5):1478. https://doi.org/10.1149/1.2048599
Motawea M, El-Hossiany A, Fouda A (2019) Corrosion control of copper in nitric acid solution using chenopodium extract. Int J Electrochem Sci 14(2):1372–1387
Refat HM, Fadda A (2016) Synthesis and antimicrobial activity of some novel hydrazide, pyrazole, triazine, isoxazole, and pyrimidine derivatives. J Heterocycl Chem 53(4):1129–1137. https://doi.org/10.1002/jhet.2369
Magaino S (1997) Corrosion rate of copper rotating-disk-electrode in simulated acid rain. Electrochim Acta 42(3):377–382. https://doi.org/10.1016/S0013-4686(96)00225-3
Jomy J, Sharma S, Prabhu P, Prabhu D (2022) Corrosion behavior of en18 steel and copper in the sulfuric acid medium for as-bought and annealed materials. J Mater Eng Perform. https://doi.org/10.1007/s11665-022-07698-0