Recurring slope lineae in equatorial regions of Mars

Nature Geoscience - Tập 7 Số 1 - Trang 53-58 - 2014
A. S. McEwen1, C. M. Dundas2, S. Mattson1, A. D. Toigo3, L. Ojha4, J. J. Wray4, M. Chojnacki1, Shane Byrne1, S. L. Murchie3, N. Thomas5
1Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA
2US Geological Survey, Flagstaff, Arizona 86001, USA
3Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland 20723, USA
4Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
5Physikalisches Institut, University of Bern, Bern, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Haberle, R. M. et al. On the possibility of liquid water on present-day Mars. J. Geophys. Res. 106, 23317–23326 (2001).

Brass, G. W. Stability of brines on Mars. Icarus 42, 20–28 (1980).

McEwen, A. S. et al. Seasonal flows on warm Martian slopes. Science 333, 740–744 (2011).

Mohlmann, D. Three types of liquid water in icy surfaces of celestial bodies. Planet. Space Sci. 59, 1082–1086 (2011).

Cull, S. C. et al. Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophys. Res. Lett. 37, L22203 (2010).

Chevrier, V. F. & Rivera-Valentin, E. G. Formation of recurring slope lineae by liquid brines on present-day Mars. Geophys. Res. Lett. 39, L21202 (2012).

McClennan, S. M. in Sedimentary Geology of Mars (eds Grotzinger, J. & Milliken, R.) 119–138 (SEPM Special Publication No. 102, SEPM, 2012).

McEwen, A. S. et al. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007).

Ojha, L. et al. Recurring slope lineae on Mars: Updated global survey results. Lunar Planet. Sci. Conf. 43, 2591 (2012).

Smith, D. E. et al. The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999).

Malin, M. C. & Edgett, K. E. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).

Dundas, C. M. et al. Seasonal activity and morphological changes in Martian gullies. Icarus 220, 124–143 (2012).

Christensen, P. R. et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 110, 85–130 (2004).

Schorghofer, N., Aharonson, O. & Khatiwala, S. Slope streaks on Mars: Correlations with surface properties and the potential role of water. Geophys. Res. Lett. 29, 2126 (2002).

Hansen, C. et al. Seasonal erosion and restoration of Mars’ Northern Polar Dunes. Science 331, 283–295 (2011).

Ayoub, F., Bridges, N. T., Avouac, J-P., Leprince, S. & Lucas, A. 3rd Int. Planetary Dunes Workshop. LPI Contribution, 1673, 1–2 (LPI, 2012).

Murchie, S. L. et al. Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112, E05S03 (2007).

Massé, M. et al. Nature and origin of RSL: Spectroscopy and detectability of liquid brines in the near-infrared. Lunar Planet. Sci. Conf. 43, 1856 (2012).

Pommerol, A. et al. Photometric properties of Mars soils analogs. J. Geophys. Res. Planets 118, 2045–2072 (2013).

Byrne, S. et al. Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674–1678 (2008).

Dundas, C. M. et al. Observations of ice-exposing impacts on Mars over three Mars years. AGU Fall Meeting abstr. P31C-07 (2013).

Mellon, M. T., Feldman, W. C. & Prettyman, T. H. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169, 324–340 (2004).

Burt, D. M. & Knauth, L. P. Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. J. Geophys. Res. 108, 8026 (2003).

Levy, J. S. Hydrological characteristics of recurrent slope lineae on Mars: Evidence for liquid flow through regolith and comparisons with Antarctic terrestrial analogs. Icarus 219, 1–4 (2012).

Dickson, J. L., Head, J. W., Levy, J. S., Marchant, D. R. & Don Juan, Pond Antarctica: Near-surface CaCl2-brine feeding Earth’s most saline lake and implications for Mars. Sci. Rep. 3, 1–7 (2013).

Toigo, A. D., Smith, M. D., Seelos, F. P. & Murchie, S. L. High spatial and temporal resolution sampling of Martian gas abundances from CRISM spectra. J. Geophys. Res. 118, 89–104 (2013).

Smith, M. D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004).

Clancy, R. T. et al. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9571 (2000).

Gough, R. V., Chevrier, V. F., Baustian, K. J., Wise, M. E. & Tolbert, M. A. Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars. Earth Planet. Sci. Lett. 312, 371–377 (2011).

Mohlmann, D. T. F., Niemand, M., Formisano, V., Savijarvi, H. & Wolkenberg, P. Fog phenomena on Mars. Planet. Space Sci. 57, 1987–1992 (2009).

Cantor, B. A., James, P. B., Caplinger, M. & Wolff, M. J. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 23653–23688 (2001).

Goldspiel, J. M. & Squyres, S. W. Groundwater discharge and gully formation on martian slopes. Icarus 211, 238–258 (2011).

Osterloo, M. M., Anderson, F. S., Hamilton, V. E. & Hynek, B. M. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010).

Ojha, L., Wray, J. J., McEwen, A. S. & Murchie, S. L. Spectral constraints on the nature and formation mechanism of recurring slope lineae. Geophys. Res. Lett. http://dx.doi.org/10.1002/2013GL057893  (2013).

Kminek, G. et al. Report to the COSPAR Mars special region colloquium. Adv. Space Res. 46, 811–829 (2010).

Stillman, D. E., Grimm, R. E., Michaels, T. I. & Harrison, K. P. Formation of recurrent slope lineae (RSL) by freshwater discharge of melted cold traps. Lunar Planet. Sci. Conf. 44, 1737 (2013).

Paige, D. A. et al. Concepts and Approaches for Mars Exploration. LPI Contribution, 1679, 4235 (LPI, 2012).

Kirk, R. L. et al. Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res. 113, E00A24 (2008).

Christensen, P. R. et al. JMARS — A Planetary GIS. AGU Fall Meeting, #IN22A-06 (2009).

Christensen, P. R. et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 106, 23823–23872 (2001).