Recrystallization mechanisms and microstructure development in emerging metallic materials: A review
Tài liệu tham khảo
Porter, 2009
Rios, 2005, Nucleation and growth during recrystallization, Mater. Res., 8, 225, 10.1590/S1516-14392005000300002
Sakai, 2013, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci.
Fabregue, 2014, Enhanced recovery and recrystallization of metals due to an applied current, Scripta Mater., 92, 3, 10.1016/j.scriptamat.2014.07.004
Al-Hussein, 2003, On the mechanisms of recrystallization after melting in semicrystalline polymers: the effect of the initial melt state, J. Macromol. Sci. Part B: Phys., 42, 77
Oleinik, 1998, Primary recrystallization mechanisms in ceramic materials, Powder Metall. Met Ceram., 37, 56
Burke, 1952, Recrystallization and grain growth, Prog. Met. Phys., 220, 10.1016/0502-8205(52)90009-9
Cahn, 1949, Recrystallization of single crystals after plastic bending, J. Inst. Met., 76, 121
Cahn, 1950, A new theory of recrystallization nuclei, Proc. Phys. Soc., 63, 323, 10.1088/0370-1298/63/4/302
Cottrell, 1953, vol. 4, 251
Doherty, 1997, Current issues in recrystallization: a review, Mater. Sci. Eng., A238, 219, 10.1016/S0921-5093(97)00424-3
Kamma, 1984, Recrystallization mechanism in carbon steels, Can. Metall. Q., 23, 249, 10.1179/cmq.1984.23.2.249
Doherty, 1997, Recrystallization and texture, Prog. Mater. Sci., 42, 39, 10.1016/S0079-6425(97)00007-8
Humphreys, 2004, Nucleation in recrystallization, Mater. Sci. Forum, 467–470, 107, 10.4028/www.scientific.net/MSF.467-470.107
Alaneme, 2010, Phase transformation studies of a low alloy steel in the (a + γ) phase region, Mater. Res., 13, 113, 10.1590/S1516-14392010000100022
Alaneme, 2010, Influence of tempered microstructures on the transformation behaviour of cold deformed and intercritically annealed medium carbon low alloy steel, Mater. Res., 13, 203, 10.1590/S1516-14392010000200014
Hornbogen, 1977, Inhibition of recrystallization in supersaturated solid solutions by large amounts of cold work, J. Mater. Sci., 12, 1565, 10.1007/BF00542807
Hornbogen, 1978, 159
Hornbogen, 1979, Combined reactions, Metall. Trans. A, 10A, 947, 10.1007/BF02811643
Kamma, 2005, Alaneme design of high strength microstructures in carbon steel by thermomechanical treatment, 139
Xu, 2013, Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy, J.Alloys Compds, 580, 262, 10.1016/j.jallcom.2013.05.082
Liu, 2016, Hot deformation behavior and microstructural evolution characteristics of Ti-44Al-5V-1Cr alloy containing (γ + α2 + B2) phases, Metals, 6, 305, 10.3390/met6120305
Hou, 2017, Deformation behavior of Al0.25CoCrFeNi high-entropy alloy after recrystallization, Metals, 7, 111, 10.3390/met7040111
Zhang, 2013, Simulation of dynamic recrystallization of NiTi shape memory alloy during hot compression deformation based on cellular automaton, Comput. Mater. Sci., 71, 124, 10.1016/j.commatsci.2013.01.019
Lu, 2015, Texture evolution and recrystallization behaviors of Cu−Ag alloys subjected to cryogenic rolling, Trans. Nonferrous Metals Soc. China, 25, 2948, 10.1016/S1003-6326(15)63921-8
Huang, 2016
Liang, 2017, Non-deformation recrystallization of metal with electric current stressing, J. Alloy. Comp., 722, 690, 10.1016/j.jallcom.2017.06.032
Martin, 1997
Hansen, 2001, New discoveries in deformed metals, metal, Mater. Trans., 32A, 2917, 10.1007/s11661-001-0167-x
Davies, 2007, Texture and boundary characteristics of severely deformed and recrystallized copper, Mater. Sci. Forum, 558–559, 177, 10.4028/www.scientific.net/MSF.558-559.177
Konkova, 2015, Annealing behavior of cryogenically-rolled Cu-30Zn brass, J. Alloy. Comp., 10.1016/j.jallcom.2015.05.287
Oliferuk, 2015, Distribution of energy storage rate in area of strain localization during tension of austenitic steel, IOP Conf. Ser. Mater. Sci. Eng., 71, 012055, 10.1088/1757-899X/71/1/012055
Lin, 2011, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des., 32, 1733, 10.1016/j.matdes.2010.11.048
Zhang, 2013, A comparative study of clock rolling and unidirectional rolling on deformation/recrystallization microstructure and texture of high purity tantalum plates, Int. J. Refract. Metals Hard Mater., 41, 453, 10.1016/j.ijrmhm.2013.06.003
Zhang, 2016, Deformation behavior of high Nb containing TiAl based alloy in α + γ two phase field region, Mater. Des., 90, 225, 10.1016/j.matdes.2015.10.080
He, 2017, Cryo-rolling enhanced inhomogeneous deformation and recrystallization grain growth of a zirconium alloy, J. Alloy. Comp., 699, 160, 10.1016/j.jallcom.2016.12.300
Grygier, 2016, The effectiveness of recrystallization of pearlitic steels in the regards of the change the annealing time, Int. J. New Techn. Res. (IJNTR), 2, 15
Moreira, 2016, A dilatometric study of the influence of residual iron content on the annealing behavior of cartridge brass, Mater. Res., 19, 483, 10.1590/1980-5373-MR-2015-0597
Jiang, 2019, Effects of the grain size and shape on the flow stress: a dislocation dynamics study, Int. J. Plast., 113, 111, 10.1016/j.ijplas.2018.09.008
Hajizadeh, 2013, Stored energy and recrystallization kinetics of ultrafine grained titanium processed by severe plastic deformation, Physica B, 417, 33, 10.1016/j.physb.2013.02.031
Jones, 2003, Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium, Acta Mater., 51, 2149, 10.1016/S1359-6454(03)00002-8
Matusiewicz, 2011, Recrystallization of ferrite in spheroidite of Fe-0.67%C steel, Arch. Metall. Mater., 56, 63, 10.2478/v10172-011-0007-y
Raabe, 2014, Recovery and recrystallization: phenomena, physics, models, simulation, 2291
Schindler, 2009, Effect of cold rolling and annealing on mechanical properties of HSLA steel, Arch. Mater. Sci. Eng., 36, 41
Humphreys, 2004
Yu, 2015, Recovery by triple junction motion in heavily deformed metals, IOP Conf. Ser. Mater. Sci. Eng., 89, 012014, 10.1088/1757-899X/89/1/012014
Gorelik, 1981, 479
Verlinden, 2007, Softening mechanisms, vol. 11, 86
Nes, 1995, Recovery revisited, Acta Metall. Mater., 43, 2189, 10.1016/0956-7151(94)00409-9
Haasen, 1997
Alaneme, 2002, 1
Hallberg, 2011, Approaches to modeling of recrystallization, Metals, 1, 16, 10.3390/met1010016
Jazaeri, 2004, The transition from discontinuous to continuous recrystallization in some aluminium alloys II – annealing behaviour, Acta Mater., 52, 3251, 10.1016/j.actamat.2004.03.031
Gourdet, 2003, A model of continuous dynamic recrystallization, Acta Mater., 51, 2685, 10.1016/S1359-6454(03)00078-8
Hu, 2008, Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery, Mater. Char., 59, 1185, 10.1016/j.matchar.2007.09.010
Edalati, 2014, Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metal s: investigation using high-pressure torsion, Mater. Sci. Eng. A, 613, 103, 10.1016/j.msea.2014.06.084
Huang, 2017, The surprising influence of continuous alternating electric current on recrystallization behaviour of a cold-rolled Aluminium alloy, Mater. Char., 10.1016/j.matchar.2017.04.036
Zhou, 2004, Recrystallized microstructure in cold worked brass produced by electropulsing treatment, Mater. Lett., 58, 1948, 10.1016/j.matlet.2003.11.035
Huang, 2016, Effect of strain rate and deformation temperature on strain hardening and softening behavior of pure copper, Trans. Non. Met. Soc. China, 26, 1044, 10.1016/S1003-6326(16)64201-2
Shi, 2014, Microstructural evolution and dynamic softening mechanisms of Al-Zn-Mg-Cu alloy during hot compressive deformation, Materials, 7, 244, 10.3390/ma7010244
Cram, 2012, The effect of solute on discontinuous dynamic recrystallization, Acta Mater., 60, 6390, 10.1016/j.actamat.2012.08.021
Kassner, 2005, New developments in geometric dynamic recrystallization, Mater. Sci. Eng. A, 410–411, 152, 10.1016/j.msea.2005.08.052
Ponge, 1998, Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior, Acta Mater., 46, 69, 10.1016/S1359-6454(97)00233-4
Momeni, 2014, Microstructure evolution at the onset of discontinuous dynamic recrystallization: a physics-based model of subgrain critical size, J. Alloy. Comp., 587, 199, 10.1016/j.jallcom.2013.10.180
McQueen, 2004, Dynamic recrystallization: plasticity enhancing structural development, J. Alloy. Comp., 378, 35, 10.1016/j.jallcom.2003.10.067
Wang, 2003, Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation, Mater. Trans., 44 10, 1926, 10.2320/matertrans.44.1926
Das, 2011, Evolution of nanostructure in α-brass upon cryorolling, Mater. Sci. Eng. A, 530, 675, 10.1016/j.msea.2011.10.002
Kim, 2007, Effect of primary recrystallization texture on abnormal grain growth in an aluminum alloy, Scripta Mater., 57, 325, 10.1016/j.scriptamat.2007.04.023
P.R., 2002, An irreversible thermodynamic approach to normal grain growth with a pinning force, Mater. Sci. Eng., 332, 231
Shanmugam, 2008, Microstructure and high strength–toughness combination of a new 700MPa Nb-microalloyed pipeline steel, Mater. Sci. Eng. A, 478, 26, 10.1016/j.msea.2007.06.003
Wu, 2016, Dynamic recrystallization behavior and kinetics of high strength steel, J. Cent. South Univ., 23, 1007, 10.1007/s11771-016-3149-2
Kuziak, 2008, Advanced high strength steels for automotive industry, Arch. Civil Mech. Eng., 8, 104, 10.1016/S1644-9665(12)60197-6
Yang, 2009, Recrystallization behavior of deformed austenite in high strength microalloyed pipeline steel, J. Iron Steel Res. Int., 16, 75, 10.1016/S1006-706X(09)60014-5
Bracke, 2009, Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel, Acta Mater., 57, 1512, 10.1016/j.actamat.2008.11.036
Saha, 2013, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater., 68, 813, 10.1016/j.scriptamat.2013.01.038
Castan, 2013, Dynamic recrystallization mechanisms of an Fe–8% Al low densitysteel under hot rolling conditions, Scripta Mater., 68, 360, 10.1016/j.scriptamat.2012.07.037
Wu, 2016, Dynamic recrystallization behavior and kinetics of high strength steel, J. Cent. South Univ., 23, 1007, 10.1007/s11771-016-3149-2
Niespodziana, 2008, The synthesis of titanium alloys for Biomedical applications, Rev. Adv. Mater. Sci., 18, 236
Oak, 2008, Formation, mechanical properties and corrosion resistance of Ti–Pd base glassy alloys, J. Non-Cryst. Solids, 354, 1828, 10.1016/j.jnoncrysol.2007.10.025
Wu, 2018, Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression, J. Alloy. Comp., 749, 844, 10.1016/j.jallcom.2018.03.372
Matsumoto, 2017, Mesoscale modeling of dynamic recrystallization behavior, grain size evolution, dislocation density, processing map characteristic, and room temperature strength of Ti-6Al-4V alloy forged in the (α+β) region, J. Alloy. Comp., 10.1016/j.jallcom.2017.02.285
Li, 2014, Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression, Mater. Char., 97, 169, 10.1016/j.matchar.2014.09.013
Wan, 2017, Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy, Mater. Des., 122, 11, 10.1016/j.matdes.2017.02.088
Li, 2014, Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy, Mater. Char., 95, 148, 10.1016/j.matchar.2014.06.015
Robson, 2015, Critical assessment 9: wrought magnesium alloys, Mater. Sci. Technol., 31, 257, 10.1179/1743284714Y.0000000683
Kumar, 2016, A measure of plastic anisotropy for hexagonal close packed metals: application to alloying effects on the formability of Mg, J.Alloys Comp., 695, 1488, 10.1016/j.jallcom.2016.10.287
Ebrahimi, 2012, Hot deformation behavior of AZ91 magnesium alloy in temperature ranging from 350 °C to 425 °C, Trans. Nonferrous Metals Soc. China, 22, 2066, 10.1016/S1003-6326(11)61429-5
Stanford, 2013, The effect of rare earth elements on the behaviour of magnesium-based alloys: Part1—hot deformation behaviour, Mater. Sci. Eng. A, 565, 459, 10.1016/j.msea.2012.12.023
Biswas, 2010, Room-temperature equal channel angular extrusion of pure magnesium, Acta Mater., 58, 3247, 10.1016/j.actamat.2010.01.051
Tsai, 2014, High-entropy alloys: a critical review, Mater. Res. Letts, 10.1080/21663831.2014.912690
Slone, 2019, Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures, Acta Mater., 165, 496, 10.1016/j.actamat.2018.12.015
Alaneme, 2016, Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review, J. Mater. Res. Techn., 10.1016/j.jmrt.2016.03.004
Sathiaraj, 2016, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy, Intermetallics, 69, 1, 10.1016/j.intermet.2015.10.005
Tsai, 2009, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloy. Comp., 486, 427, 10.1016/j.jallcom.2009.06.182
Bhattacharjee, 2014, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloy. Comp., 587, 544, 10.1016/j.jallcom.2013.10.237
Saha, 2013, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater., 68, 813, 10.1016/j.scriptamat.2013.01.038
N.D. Stepanov, D.G. Shaysultanov, N.Yu. Yurchenko, S.V.Zherebtsov, A.N. Ladygin, G.A. Salishchev, M.A. Tikhonovsky, High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn High entropy alloy, Mater. Sci. Eng. A, https://doi.org/10.1016/j.msea.2015.03.097.
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo and H.Z. Fu, Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy, Mater. Sci. Eng. A, https://doi.org/10.1016/j.msea.2015.10.113.
Canbay, 2013, Thermal analysis of Cu-14.82 wt.% Al-0.4 wt.% Be shape memory alloy, J. Therm. Anal. Calorim., 113, 731, 10.1007/s10973-012-2792-6
Alaneme, 2016, Reconciling viability and cost-effective shape memory alloy options – a review of copper and iron based shape memory metallic systems, Eng. Sci. Tech. Int. J., 19, 1582, 10.1016/j.jestch.2016.05.010
Fang, 2015, Feasibility study of shape memory alloy ring spring systems for self-centring seismic resisting devices, Smart Mater. Struct., 24, 075024, 10.1088/0964-1726/24/7/075024
Dasgupta, 2014, A look into Cu-based shape memory alloys: present scenario and future prospects, J. Mater. Res., 29, 1681, 10.1557/jmr.2014.189
Jiang, 2013, Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation, Trans. Nonferrous Metals Soc. China, 23, 140, 10.1016/S1003-6326(13)62440-1
Basu, 2015, Dynamic recrystallization in a Ni–Ti–Fe shape memory alloy: effects on austenite–martensite phase transformation, J. Alloy. Comp., 639, 94, 10.1016/j.jallcom.2015.03.085
Yin, 2017, Mechanism of continuous dynamic recrystallization in a 50Ti-47Ni-3Fe shape memory alloy during hot compressive deformation, J. Alloy. Comp., 693, 426, 10.1016/j.jallcom.2016.09.228
Zhang, 2017, Influence of partial static recrystallization on microstructures and mechanical properties of NiTiFe shape memory alloy subjected to severe plastic deformation, Mater. Res. Bull., 88, 226, 10.1016/j.materresbull.2016.12.042