Recrystallization mechanisms and microstructure development in emerging metallic materials: A review

Kenneth Kanayo Alaneme1, Eloho Anita Okotete1
1Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure PMB 704, Nigeria

Tài liệu tham khảo

Porter, 2009 Rios, 2005, Nucleation and growth during recrystallization, Mater. Res., 8, 225, 10.1590/S1516-14392005000300002 Sakai, 2013, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. Fabregue, 2014, Enhanced recovery and recrystallization of metals due to an applied current, Scripta Mater., 92, 3, 10.1016/j.scriptamat.2014.07.004 Al-Hussein, 2003, On the mechanisms of recrystallization after melting in semicrystalline polymers: the effect of the initial melt state, J. Macromol. Sci. Part B: Phys., 42, 77 Oleinik, 1998, Primary recrystallization mechanisms in ceramic materials, Powder Metall. Met Ceram., 37, 56 Burke, 1952, Recrystallization and grain growth, Prog. Met. Phys., 220, 10.1016/0502-8205(52)90009-9 Cahn, 1949, Recrystallization of single crystals after plastic bending, J. Inst. Met., 76, 121 Cahn, 1950, A new theory of recrystallization nuclei, Proc. Phys. Soc., 63, 323, 10.1088/0370-1298/63/4/302 Cottrell, 1953, vol. 4, 251 Doherty, 1997, Current issues in recrystallization: a review, Mater. Sci. Eng., A238, 219, 10.1016/S0921-5093(97)00424-3 Kamma, 1984, Recrystallization mechanism in carbon steels, Can. Metall. Q., 23, 249, 10.1179/cmq.1984.23.2.249 Doherty, 1997, Recrystallization and texture, Prog. Mater. Sci., 42, 39, 10.1016/S0079-6425(97)00007-8 Humphreys, 2004, Nucleation in recrystallization, Mater. Sci. Forum, 467–470, 107, 10.4028/www.scientific.net/MSF.467-470.107 Alaneme, 2010, Phase transformation studies of a low alloy steel in the (a + γ) phase region, Mater. Res., 13, 113, 10.1590/S1516-14392010000100022 Alaneme, 2010, Influence of tempered microstructures on the transformation behaviour of cold deformed and intercritically annealed medium carbon low alloy steel, Mater. Res., 13, 203, 10.1590/S1516-14392010000200014 Hornbogen, 1977, Inhibition of recrystallization in supersaturated solid solutions by large amounts of cold work, J. Mater. Sci., 12, 1565, 10.1007/BF00542807 Hornbogen, 1978, 159 Hornbogen, 1979, Combined reactions, Metall. Trans. A, 10A, 947, 10.1007/BF02811643 Kamma, 2005, Alaneme design of high strength microstructures in carbon steel by thermomechanical treatment, 139 Xu, 2013, Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy, J.Alloys Compds, 580, 262, 10.1016/j.jallcom.2013.05.082 Liu, 2016, Hot deformation behavior and microstructural evolution characteristics of Ti-44Al-5V-1Cr alloy containing (γ + α2 + B2) phases, Metals, 6, 305, 10.3390/met6120305 Hou, 2017, Deformation behavior of Al0.25CoCrFeNi high-entropy alloy after recrystallization, Metals, 7, 111, 10.3390/met7040111 Zhang, 2013, Simulation of dynamic recrystallization of NiTi shape memory alloy during hot compression deformation based on cellular automaton, Comput. Mater. Sci., 71, 124, 10.1016/j.commatsci.2013.01.019 Lu, 2015, Texture evolution and recrystallization behaviors of Cu−Ag alloys subjected to cryogenic rolling, Trans. Nonferrous Metals Soc. China, 25, 2948, 10.1016/S1003-6326(15)63921-8 Huang, 2016 Liang, 2017, Non-deformation recrystallization of metal with electric current stressing, J. Alloy. Comp., 722, 690, 10.1016/j.jallcom.2017.06.032 Martin, 1997 Hansen, 2001, New discoveries in deformed metals, metal, Mater. Trans., 32A, 2917, 10.1007/s11661-001-0167-x Davies, 2007, Texture and boundary characteristics of severely deformed and recrystallized copper, Mater. Sci. Forum, 558–559, 177, 10.4028/www.scientific.net/MSF.558-559.177 Konkova, 2015, Annealing behavior of cryogenically-rolled Cu-30Zn brass, J. Alloy. Comp., 10.1016/j.jallcom.2015.05.287 Oliferuk, 2015, Distribution of energy storage rate in area of strain localization during tension of austenitic steel, IOP Conf. Ser. Mater. Sci. Eng., 71, 012055, 10.1088/1757-899X/71/1/012055 Lin, 2011, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des., 32, 1733, 10.1016/j.matdes.2010.11.048 Zhang, 2013, A comparative study of clock rolling and unidirectional rolling on deformation/recrystallization microstructure and texture of high purity tantalum plates, Int. J. Refract. Metals Hard Mater., 41, 453, 10.1016/j.ijrmhm.2013.06.003 Zhang, 2016, Deformation behavior of high Nb containing TiAl based alloy in α + γ two phase field region, Mater. Des., 90, 225, 10.1016/j.matdes.2015.10.080 He, 2017, Cryo-rolling enhanced inhomogeneous deformation and recrystallization grain growth of a zirconium alloy, J. Alloy. Comp., 699, 160, 10.1016/j.jallcom.2016.12.300 Grygier, 2016, The effectiveness of recrystallization of pearlitic steels in the regards of the change the annealing time, Int. J. New Techn. Res. (IJNTR), 2, 15 Moreira, 2016, A dilatometric study of the influence of residual iron content on the annealing behavior of cartridge brass, Mater. Res., 19, 483, 10.1590/1980-5373-MR-2015-0597 Jiang, 2019, Effects of the grain size and shape on the flow stress: a dislocation dynamics study, Int. J. Plast., 113, 111, 10.1016/j.ijplas.2018.09.008 Hajizadeh, 2013, Stored energy and recrystallization kinetics of ultrafine grained titanium processed by severe plastic deformation, Physica B, 417, 33, 10.1016/j.physb.2013.02.031 Jones, 2003, Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium, Acta Mater., 51, 2149, 10.1016/S1359-6454(03)00002-8 Matusiewicz, 2011, Recrystallization of ferrite in spheroidite of Fe-0.67%C steel, Arch. Metall. Mater., 56, 63, 10.2478/v10172-011-0007-y Raabe, 2014, Recovery and recrystallization: phenomena, physics, models, simulation, 2291 Schindler, 2009, Effect of cold rolling and annealing on mechanical properties of HSLA steel, Arch. Mater. Sci. Eng., 36, 41 Humphreys, 2004 Yu, 2015, Recovery by triple junction motion in heavily deformed metals, IOP Conf. Ser. Mater. Sci. Eng., 89, 012014, 10.1088/1757-899X/89/1/012014 Gorelik, 1981, 479 Verlinden, 2007, Softening mechanisms, vol. 11, 86 Nes, 1995, Recovery revisited, Acta Metall. Mater., 43, 2189, 10.1016/0956-7151(94)00409-9 Haasen, 1997 Alaneme, 2002, 1 Hallberg, 2011, Approaches to modeling of recrystallization, Metals, 1, 16, 10.3390/met1010016 Jazaeri, 2004, The transition from discontinuous to continuous recrystallization in some aluminium alloys II – annealing behaviour, Acta Mater., 52, 3251, 10.1016/j.actamat.2004.03.031 Gourdet, 2003, A model of continuous dynamic recrystallization, Acta Mater., 51, 2685, 10.1016/S1359-6454(03)00078-8 Hu, 2008, Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery, Mater. Char., 59, 1185, 10.1016/j.matchar.2007.09.010 Edalati, 2014, Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metal s: investigation using high-pressure torsion, Mater. Sci. Eng. A, 613, 103, 10.1016/j.msea.2014.06.084 Huang, 2017, The surprising influence of continuous alternating electric current on recrystallization behaviour of a cold-rolled Aluminium alloy, Mater. Char., 10.1016/j.matchar.2017.04.036 Zhou, 2004, Recrystallized microstructure in cold worked brass produced by electropulsing treatment, Mater. Lett., 58, 1948, 10.1016/j.matlet.2003.11.035 Huang, 2016, Effect of strain rate and deformation temperature on strain hardening and softening behavior of pure copper, Trans. Non. Met. Soc. China, 26, 1044, 10.1016/S1003-6326(16)64201-2 Shi, 2014, Microstructural evolution and dynamic softening mechanisms of Al-Zn-Mg-Cu alloy during hot compressive deformation, Materials, 7, 244, 10.3390/ma7010244 Cram, 2012, The effect of solute on discontinuous dynamic recrystallization, Acta Mater., 60, 6390, 10.1016/j.actamat.2012.08.021 Kassner, 2005, New developments in geometric dynamic recrystallization, Mater. Sci. Eng. A, 410–411, 152, 10.1016/j.msea.2005.08.052 Ponge, 1998, Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior, Acta Mater., 46, 69, 10.1016/S1359-6454(97)00233-4 Momeni, 2014, Microstructure evolution at the onset of discontinuous dynamic recrystallization: a physics-based model of subgrain critical size, J. Alloy. Comp., 587, 199, 10.1016/j.jallcom.2013.10.180 McQueen, 2004, Dynamic recrystallization: plasticity enhancing structural development, J. Alloy. Comp., 378, 35, 10.1016/j.jallcom.2003.10.067 Wang, 2003, Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation, Mater. Trans., 44 10, 1926, 10.2320/matertrans.44.1926 Das, 2011, Evolution of nanostructure in α-brass upon cryorolling, Mater. Sci. Eng. A, 530, 675, 10.1016/j.msea.2011.10.002 Kim, 2007, Effect of primary recrystallization texture on abnormal grain growth in an aluminum alloy, Scripta Mater., 57, 325, 10.1016/j.scriptamat.2007.04.023 P.R., 2002, An irreversible thermodynamic approach to normal grain growth with a pinning force, Mater. Sci. Eng., 332, 231 Shanmugam, 2008, Microstructure and high strength–toughness combination of a new 700MPa Nb-microalloyed pipeline steel, Mater. Sci. Eng. A, 478, 26, 10.1016/j.msea.2007.06.003 Wu, 2016, Dynamic recrystallization behavior and kinetics of high strength steel, J. Cent. South Univ., 23, 1007, 10.1007/s11771-016-3149-2 Kuziak, 2008, Advanced high strength steels for automotive industry, Arch. Civil Mech. Eng., 8, 104, 10.1016/S1644-9665(12)60197-6 Yang, 2009, Recrystallization behavior of deformed austenite in high strength microalloyed pipeline steel, J. Iron Steel Res. Int., 16, 75, 10.1016/S1006-706X(09)60014-5 Bracke, 2009, Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel, Acta Mater., 57, 1512, 10.1016/j.actamat.2008.11.036 Saha, 2013, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater., 68, 813, 10.1016/j.scriptamat.2013.01.038 Castan, 2013, Dynamic recrystallization mechanisms of an Fe–8% Al low densitysteel under hot rolling conditions, Scripta Mater., 68, 360, 10.1016/j.scriptamat.2012.07.037 Wu, 2016, Dynamic recrystallization behavior and kinetics of high strength steel, J. Cent. South Univ., 23, 1007, 10.1007/s11771-016-3149-2 Niespodziana, 2008, The synthesis of titanium alloys for Biomedical applications, Rev. Adv. Mater. Sci., 18, 236 Oak, 2008, Formation, mechanical properties and corrosion resistance of Ti–Pd base glassy alloys, J. Non-Cryst. Solids, 354, 1828, 10.1016/j.jnoncrysol.2007.10.025 Wu, 2018, Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression, J. Alloy. Comp., 749, 844, 10.1016/j.jallcom.2018.03.372 Matsumoto, 2017, Mesoscale modeling of dynamic recrystallization behavior, grain size evolution, dislocation density, processing map characteristic, and room temperature strength of Ti-6Al-4V alloy forged in the (α+β) region, J. Alloy. Comp., 10.1016/j.jallcom.2017.02.285 Li, 2014, Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression, Mater. Char., 97, 169, 10.1016/j.matchar.2014.09.013 Wan, 2017, Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy, Mater. Des., 122, 11, 10.1016/j.matdes.2017.02.088 Li, 2014, Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy, Mater. Char., 95, 148, 10.1016/j.matchar.2014.06.015 Robson, 2015, Critical assessment 9: wrought magnesium alloys, Mater. Sci. Technol., 31, 257, 10.1179/1743284714Y.0000000683 Kumar, 2016, A measure of plastic anisotropy for hexagonal close packed metals: application to alloying effects on the formability of Mg, J.Alloys Comp., 695, 1488, 10.1016/j.jallcom.2016.10.287 Ebrahimi, 2012, Hot deformation behavior of AZ91 magnesium alloy in temperature ranging from 350 °C to 425 °C, Trans. Nonferrous Metals Soc. China, 22, 2066, 10.1016/S1003-6326(11)61429-5 Stanford, 2013, The effect of rare earth elements on the behaviour of magnesium-based alloys: Part1—hot deformation behaviour, Mater. Sci. Eng. A, 565, 459, 10.1016/j.msea.2012.12.023 Biswas, 2010, Room-temperature equal channel angular extrusion of pure magnesium, Acta Mater., 58, 3247, 10.1016/j.actamat.2010.01.051 Tsai, 2014, High-entropy alloys: a critical review, Mater. Res. Letts, 10.1080/21663831.2014.912690 Slone, 2019, Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures, Acta Mater., 165, 496, 10.1016/j.actamat.2018.12.015 Alaneme, 2016, Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review, J. Mater. Res. Techn., 10.1016/j.jmrt.2016.03.004 Sathiaraj, 2016, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy, Intermetallics, 69, 1, 10.1016/j.intermet.2015.10.005 Tsai, 2009, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloy. Comp., 486, 427, 10.1016/j.jallcom.2009.06.182 Bhattacharjee, 2014, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J. Alloy. Comp., 587, 544, 10.1016/j.jallcom.2013.10.237 Saha, 2013, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel, Scripta Mater., 68, 813, 10.1016/j.scriptamat.2013.01.038 N.D. Stepanov, D.G. Shaysultanov, N.Yu. Yurchenko, S.V.Zherebtsov, A.N. Ladygin, G.A. Salishchev, M.A. Tikhonovsky, High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn High entropy alloy, Mater. Sci. Eng. A, https://doi.org/10.1016/j.msea.2015.03.097. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo and H.Z. Fu, Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy, Mater. Sci. Eng. A, https://doi.org/10.1016/j.msea.2015.10.113. Canbay, 2013, Thermal analysis of Cu-14.82 wt.% Al-0.4 wt.% Be shape memory alloy, J. Therm. Anal. Calorim., 113, 731, 10.1007/s10973-012-2792-6 Alaneme, 2016, Reconciling viability and cost-effective shape memory alloy options – a review of copper and iron based shape memory metallic systems, Eng. Sci. Tech. Int. J., 19, 1582, 10.1016/j.jestch.2016.05.010 Fang, 2015, Feasibility study of shape memory alloy ring spring systems for self-centring seismic resisting devices, Smart Mater. Struct., 24, 075024, 10.1088/0964-1726/24/7/075024 Dasgupta, 2014, A look into Cu-based shape memory alloys: present scenario and future prospects, J. Mater. Res., 29, 1681, 10.1557/jmr.2014.189 Jiang, 2013, Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation, Trans. Nonferrous Metals Soc. China, 23, 140, 10.1016/S1003-6326(13)62440-1 Basu, 2015, Dynamic recrystallization in a Ni–Ti–Fe shape memory alloy: effects on austenite–martensite phase transformation, J. Alloy. Comp., 639, 94, 10.1016/j.jallcom.2015.03.085 Yin, 2017, Mechanism of continuous dynamic recrystallization in a 50Ti-47Ni-3Fe shape memory alloy during hot compressive deformation, J. Alloy. Comp., 693, 426, 10.1016/j.jallcom.2016.09.228 Zhang, 2017, Influence of partial static recrystallization on microstructures and mechanical properties of NiTiFe shape memory alloy subjected to severe plastic deformation, Mater. Res. Bull., 88, 226, 10.1016/j.materresbull.2016.12.042