Recrystallisation towards a single texture component in heavily cold rolled tungsten (W) sheets and its impact on micromechanics

Jens Reiser1, Carsten Bonnekoh1, Thomas Karcher1,2, Wilhelm Pfleging1,3, Daniel Weygand4, Andreas Hoffmann5
1Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics, 76344 Eggenstein-Leopoldshafen, Germany
2Now at: Tübinger Stahlfeinguss, 72070, Tübingen-Hirschau, Germany
3Karlsruhe Nano Micro Facility, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
4Karlsruhe Institute of Technology, Institute for Applied Materials – Computational Materials Science, 76131 Karlsruhe, Germany
5PLANSEE SE, 6600 Reutte, Austria

Tài liệu tham khảo

Arzt, 1998, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Mater., 46, 5611, 10.1016/S1359-6454(98)00231-6 Hall, 1951, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B, 64, 747, 10.1088/0370-1301/64/9/303 Petch, 1953, The cleavage strength of polycrystals, J. Iron. Steel. Inst., 174, 25 Wurster, 2012, Characterization of the fracture toughness of micro-sized tungsten single crystal notched specimens, Philos. Mag., 92, 1803, 10.1080/14786435.2012.658449 Velayarce, 2018, Influence of single and multiple slip conditions and temperature on the size effect in micro bending, Acta Mater., 154, 325, 10.1016/j.actamat.2018.05.054 Eisenhut, 2017, Effect of a dislocation pile-up at the neutral axis on trans-crystalline crack growth for micro-bending fatigue, Int. J. Fatigue, 94, 131, 10.1016/j.ijfatigue.2016.09.015 Kiener, 2010, Cyclic response of copper single crystal micro-beams, Scr. Mater., 63, 500, 10.1016/j.scriptamat.2010.05.014 Bohnert, 2016, Fracture toughness characterization of single-crystalline tungsten using notched micro-cantilever specimens, Int. J. Plast., 81, 1, 10.1016/j.ijplas.2016.01.014 Gibson, 2014, The micro-mechanical properties of ion irradiated tungsten, Phys. Scr., T159, 10.1088/0031-8949/2014/T159/014056 Armstrong, 2015, Small-scale characterisation of irradiated nuclear materials: part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials, J. Nucl. Mater., 462, 374, 10.1016/j.jnucmat.2015.01.053 Ast, 2017, Size-dependent fracture toughness of tungsten, Acta Mater., 138, 198, 10.1016/j.actamat.2017.07.030 Ast, 2018, The brittle-ductile transition of tungsten single crystals at the micro-scale, Mater. Des., 152, 168, 10.1016/j.matdes.2018.04.009 Prangnell, 2004, Continuous recrystallisation of lamellar deformation structures produced by severe deformation, Acta Mater., 52, 3193, 10.1016/j.actamat.2004.03.019 Pfeifenberger, 2017, The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation, Mater. Des., 121, 109, 10.1016/j.matdes.2017.02.012 Laue, 1913, Röntgenstrahlinterferenzen, Z. Phys., 14, 1075 Humphreys, 2017 Raabe, 2014, Recovery and recrystallization: phenomena, physics, models, simulation, Phys. Met., 2291 Bonnekoh, 2019, The brittle-to-ductile transition in cold rolled tungsten plates: impact of crystallographic texture, grain size and dislocation density on the transition temperature, Int. J. Refract. Met. Hard Mater., 78, 146, 10.1016/j.ijrmhm.2018.09.010 Martienssen, 2005 Lassner, 1999 Bonnekoh, 2018, The brittle-to-ductile transition in cold rolled tungsten: on the decrease of the brittle-to-ductile transition by 600 K to − 65 °C, Int. J. Refract. Met. Hard Mater., 71, 181, 10.1016/j.ijrmhm.2017.11.017 Hughes, 1997, High angle boundaries formed by grain subdivision mechanisms, Acta Mater., 45, 3871, 10.1016/S1359-6454(97)00027-X Kuhlmann, 1947, Z. Phys., 124, 468, 10.1007/BF01668885 Garrison, 2016, Irradiation effects in tungsten-copper laminate composite, J. Nucl. Mater., 481, 134, 10.1016/j.jnucmat.2016.09.020 Hasegawa, 2014, Neutron irradiation effects on tungsten materials, Fusion Eng. Des., 89, 1568, 10.1016/j.fusengdes.2014.04.035 Alfonso, 2015, Thermal stability of a highly-deformed warm-rolled tungsten plate in the temperature range 1100–1250°C, Fusion Eng. Des., 1924, 10.1016/j.fusengdes.2015.05.043 Reiser, 2017, Ductilisation of tungsten (W): tungsten laminated composites, Int. J. Refract. Met. Hard Mater., 69, 66, 10.1016/j.ijrmhm.2017.07.013 Alfonso, 2014, Recrystallization kinetics of warm-rolled tungsten in the temperature range 1150-1350°C, J. Nucl. Mater., 455, 591, 10.1016/j.jnucmat.2014.08.037