Recovery of rare and precious metals from urban mines—A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhou T, Goldfarb R J, Phillips N G. Tectonics and distribution of gold deposits in China: an overview. Mineralium Deposita, 2002, 37(3): 249–282
Pirajno F, Bagas L. Gold and silver metallogeny of the South China Fold Belt: a consequence of multiple mineralizing events? Ore Geology Reviews, 2002, 20(3): 109–126
Huang K, Guo J, Xu Z. Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. Journal of Hazardous Materials, 2009, 164(2–3): 399–408
Akcil A, Erust C, Gahan C S, Ozgun M, Sahin M, Tuncuk A. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants: a review. Waste Management (New York, N.Y.), 2015, 45: 258–271
Kim C H, Woo S I, Jeon S H. Recovery of platinum-group metals from recycled automotive catalytic converters by carbochlorination. Industrial & Engineering Chemistry Research, 2000, 39(5): 1185–1192
Glaister B J, Mudd G M. The environmental costs of platinum–PGM mining and sustainability: Is the glass half-full or halfempty? Minerals Engineering, 2010, 23(5): 438–450
Xiao Z, Laplante A R. Characterizing and recovering the platinum group minerals: a review. Minerals Engineering, 2004, 17(9–10): 961–979
Muchova L, Bakker E, Rem P. Precious metals in municipal solid waste incineration bottom ash. Water Air and Soil Pollution Focus, 2008, 9(1–2): 107–116
Wei S, Liu J, Zhang S, Chen X, Liu Q, Zhu L, Guo L, Liu X. Stoichiometry, isotherms and kinetics of adsorption of In(III) on Cyanex 923 impregnated HZ830 resin from hydrochloric acid solutions. Hydrometallurgy, 2016, 164: 219–227
Font O, Querol X, Juan R, Casado R, Ruiz C R, Lopez-Soler A, Coca P, Garcia Pena F. Recovery of gallium and vanadium from gasification fly ash. Journal of Hazardous Materials, 2007, 139(3): 413–423
Gupta B, Mudhar N, Begum Z, Singh I. Extraction and recovery of Ga(III) from waste material using Cyanex 923. Hydrometallurgy, 2007, 87(1–2): 18–26
Wang A, Wang Y, Kabe T, Chen Y, Ishihara A, Qian W. Hydrodesulfurization of dibenzothiophene over siliceous MCM- 41-supported catalysts. Journal of Catalysis, 2001, 199(1): 19–29
Song C, Reddy K M. Mesoporous molecular sieve MCM-41 supported Co–Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels. Applied Catalysis A, General, 1999, 176(1): 1–10
Duan H, Wang J, Liu L, Huang Q, Li J. Rethinking China’s strategic mineral policy on indium: implication for the flat screens and photovoltaic industries. Progress in Photovoltaics: Research and Applications, 2016, 24(1): 83–93
Scrosati B, Garche J. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010, 195(9): 2419–2430
Guo X, Liu J, Qin H, Liu Y, Tian Q, Li D. Recovery of metal values from waste printed circuit boards using an alkali fusion–leaching–separation process. Hydrometallurgy, 2015, 156: 199–205
Alfantazi A M, Moskalyk R R. Processing of indium: a review. Minerals Engineering, 2003, 16(8): 687–694
Li J. Wastes could be resources and cities could be mines. Waste Management & Research, 2015, 33(4): 301–302
Binnemans K, Jones P T, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M. Recycling of rare earths: a critical review. Journal of Cleaner Production, 2013, 51: 1–22
Zhang L, Xu Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 2016, 127: 19–36
Zeng X, Zheng L, Xie H, Lu B, Xia K, Chao K, Li W, Yang J, Lin S, Li J. Current status and future perspective of waste printed circuit boards recycling. Procedia Environmental Sciences, 2012, 16: 590–597
Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135 (4): 1167–1176
Reddi G S, Rao C R M. Analytical techniques for the determination of precious metals in geological and related materials. Analyst (London), 1999, 124(11): 1531–1540
Zhang J F, Zhou Y, Yoon J, Kim J S. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chemical Society Reviews, 2011, 40(7): 3416–3429
Kumar V, Lee J C, Jeong J, JhaMK, Kim B S, Singh R. Recycling of printed circuit boards (PCBs) to generate enriched rare metal concentrate. Journal of Industrial and Engineering Chemistry, 2015, 21: 805–813
Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256
Zeng X, Wang F, Sun X, Li J. Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1306–1312
Zeng X, Li J, Singh N. Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129–1165
Zeng X, Gong R, Chen W Q, Li J. Uncovering the recycling potential of “new” WEEE in China. Environmental Science & Technology, 2016, 50(3): 1347–1358
Zeng X, Li J, Liu L. Solving spent lithium-ion battery problems in China: opportunities and challenges. Renewable & Sustainable Energy Reviews, 2015, 52: 1759–1767
Li J, Shi P, Wang Z, Chen Y, Chang C C. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere, 2009, 77(8): 1132–1136
Zeng X, Li J, Ren Y. Prediction of various discarded lithium batteries in China. In: 2012 IEEE International Symposium on Sustainable Systems and Technology (ISSST). Beijing: IEEE,2012,1–4
Xu J, Thomas H R, Francis R W, Lum K R, Wang J, Liang B. A review of processes and technologies for the recycling of lithiumion secondary batteries. Journal of Power Sources, 2008, 177(2): 512–527
Stevels A, Huisman J, Wang F, Li J, Li B, Duan H. Take back and treatment of discarded electronics: a scientific update. Frontiers of Environmental Science & Engineering, 2013, 7(4): 475–482
Zeng X, Li J. Implications for the carrying capacity of lithium reserve in China. Resources, Conservation and Recycling, 2013, 80: 58–63
Jian C, Jisheng Y, Youyuan Z, Zhifei C, Xi W, Junwu H.Recovery indium from waster ITO target. Chinese Journal of Rare Metals, 2003, 1: 023 (in Chinese)
Lee C H, Jeong MK, Fatih Kilicaslan M, Lee J H, Hong H S, Hong S J. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM. Waste Management (New York, N.Y.), 2013, 33(3): 730–734
Ivanovic S Z, Trujuc V K, Gorgievski M D, Misic L D, Bozic D S. Removal of platinum group metals (PGMs) from the spent automobile catalyst by the pyrometallurgical process. In: Ekinovi S, Calvet J V, Tacer E, eds. Trends in the Development of Machinery and Associated Technology. Prague: TMT2011,2011, 701
Sun F, Wu W, Wu Z, Guo J, Wei Z, Yang Y, Jiang Z, Tian F, Li C. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and NiMoP catalysts. Journal of Catalysis, 2004, 228(2): 298–310
Shabaker J. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. Journal of Catalysis, 2003, 215(2): 344–352
Yang Z, Rui-lin M, Wang-dong N, Hui W. Selective leaching of base metals from copper smelter slag. Hydrometallurgy, 2010, 103 (1–4): 25–29
Cui J, Forssberg E. Mechanical recycling of waste electric and electronic equipment: a review. Journal of Hazardous Materials, 2003, 99(3): 243–263
Yoo J M, Jeong J, Yoo K, Lee J, Kim W. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill. Waste Management (New York, N.Y.), 2009, 29(3): 1132–1137
Lee J C, Song H T, Yoo J M. Present status of the recycling of waste electrical and electronic equipment in Korea. Resources, Conservation and Recycling, 2007, 50(4): 380–397
Zhou Y, Qiu K. A new technology for recycling materials from waste printed circuit boards. Journal of Hazardous Materials, 2010, 175(1–3): 823–828
Hagelüken C, Corti CW. Recycling of gold from electronics: costeffective use through “Design for Recycling”. Gold Bulletin, 2010, 43(3): 209–220
Li J, Wang G, Xu Z. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. Journal of Hazardous Materials, 2016, 302: 97–104
Ma E, Lu R, Xu Z. An efficient rough vacuum-chlorinated separation method for the recovery of indium from waste liquid crystal display panels. Green Chemistry, 2012, 14(12): 3395
Kakumazaki J, Kato T, Sugawara K. Recovery of gold from incinerated sewage sludge ash by chlorination. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2297–2300
Tuncuk A, Stazi V, Akcil A, Yazici E Y, Deveci H. Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Minerals Engineering, 2012, 25(1): 28–37
Sun L, Qiu K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Management (New York, N.Y.), 2012, 32(8): 1575–1582
Li L, Qu W, Zhang X, Lu J, Chen R, Wu F, Amine K. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 2015, 282: 544–551
Zeng X, Li J, Shen B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of Hazardous Materials, 2015, 295: 112–118
Nayaka G P, Pai K V, Santhosh G, Manjanna J. Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy, 2016, 161: 54–57
Nguyen T H, Sonu C H, Lee M S. Separation of Pt(IV), Pd(II), Rh (III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy, 2016, 164: 71–77
Zhang Z, Zhang F S. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process. Journal of Hazardous Materials, 2014, 279: 46–51
Lee J Y, Raju B, Kumar B N, Kumar J R, Park H K, Reddy B R. Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst. Separation and Purification Technology, 2010, 73(2): 213–218
Chen X, Xu B, Zhou T, Liu D, Hu H, Fan S. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Separation and Purification Technology, 2015, 144: 197–205
Banda R, Sohn S H, Lee M S. Process development for the separation and recovery of Mo and Co from chloride leach liquors of petroleum refining catalyst by solvent extraction. Journal of Hazardous Materials, 2012, 213–214: 1–6
Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides: a review. Hydrometallurgy, 2006, 84(1–2): 81–108
Zhao L, Wang L, Yang D, Zhu N. Bioleaching of spent Ni-Cd batteries and phylogenetic analysis of an acidophilic strain in acidified sludge. Frontiers of Environmental Science & Engineering in China, 2007, 1(4): 459–465
Faramarzi M A, Stagars M, Pensini E, Krebs W, Brandl H. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. Journal of Biotechnology, 2004, 113 (1–3): 321–326
Brandl H, Bosshard R, Wegmann M. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 2001, 59(2–3): 319–326
Brandl H, Lehmann S, Faramarzi M A, Martinelli D. Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy, 2008, 94(1–4): 14–17
Gadd G M. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2009, 84(1): 13–28
Gadd G M, Yao Q, Zhang H, Wu J, Shao L, He P. Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies. Frontiers of Environmental Science & Engineering in China, 2010, 4(3): 286–294
Das N. Recovery of precious metals through biosorption — A review. Hydrometallurgy, 2010, 103(1–4): 180–189
Mata Y N, Torres E, Blazquez M L, Ballester A, Gonzalez F, Munoz J A. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 2009, 166 (2–3): 612–618
Won S W, Mao J, Kwak I S, Sathishkumar M, Yun Y S. Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresource Technology, 2010, 101 (4): 1135–1140
Won S W, Kotte P, Wei W, Lim A, Yun Y S. Biosorbents for recovery of precious metals. Bioresource Technology, 2014, 160: 203–212
Won S W, Kwak I S, Yun Y S. The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresource Technology, 2014, 160: 93–97
Lister T E, Wang P, Anderko A. Recovery of critical and value metals from mobile electronics enabled by electrochemical processing. Hydrometallurgy, 2014, 149: 228–237
Oishi T, Koyama K, Alam S, Tanaka M, Lee J C. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. Hydrometallurgy, 2007, 89(1–2): 82–88
Oishi T, Yaguchi M, Koyama K, Tanaka M, Lee J C. Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis. Electrochimica Acta, 2008, 53(5): 2585–2592
Kim E Y, Kim M, Lee J, Jha M K, Yoo K, Jeong J. Effect of cuprous ions on Cu leaching in the recycling of waste PCBs, using electro-generated chlorine in hydrochloric acid solution. Minerals Engineering, 2008, 21(1): 121–128
Kim E Y, Kim M, Lee J, Yoo K, Jeong J. Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution. Hydrometallurgy, 2010, 100(3–4): 95–102
Kim E Y, Kim M, Lee J, Pandey B D. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. Journal of Hazardous Materials, 2011, 198: 206–215
Myoung J, Jung Y, Lee J, Tak Y. Cobalt oxide preparation from waste LiCoO2 by electrochemical–hydrothermal method. Journal of Power Sources, 2002, 112(2): 639–642
Teoh W H, Mammucari R, Foster N R. Solubility of organometallic complexes in supercritical carbon dioxide: a review. Journal of Organometallic Chemistry, 2013, 724: 102–116
Herrero M, Mendiola J A, Cifuentes A, Ibáñez E. Supercritical fluid extraction: recent advances and applications. Journal of Chromatography. A, 2010, 1217(16): 2495–2511
Erkey C. Supercritical carbon dioxide extraction of metals from aqueous solutions: a review. Journal of Supercritical Fluids, 2000, 17(3): 259–287
Liu K, Zhang Z, Zhang F S. Direct extraction of palladium and silver from waste printed circuit boards powder by supercritical fluids oxidation-extraction process. Journal of Hazardous Materials, 2016, 318: 216–223
Xiu F R, Qi Y, Zhang F S. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Management (New York, N.Y.), 2015, 41: 134–141
Liu K, Zhang F S. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water. Journal of Hazardous Materials, 2016, 316: 19–25
Xiu F R, Qi Y, Zhang F S. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Waste Management (New York, N.Y.), 2013, 33(5): 1251–1257
Xing M, Zhang F S. Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments. Chemical Engineering Journal, 2013, 219: 131–136
Nasser A, Mingelgrin U. Mechanochemistry: a review of surface reactions and environmental applications. Applied Clay Science, 2012, 67–68: 141–150
Frišcic T. New opportunities for materials synthesis using mechanochemistry. Journal of Materials Chemistry, 2010, 20 (36): 7599
James S L, Adams C J, Bolm C, Braga D, Collier P, Friscic T, Grepioni F, Harris K D, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen A G, Parkin I P, Shearouse WC, Steed JW, Waddell D C. Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 2012, 41(1): 413–447
Zhang Q, Saeki S, Tanaka Y, Kano J, Saito F. A soft-solution process for recovering rare metals from metal/alloy-wastes by grinding and washing with water. Journal of Hazardous Materials, 2007, 139(3): 438–442
Yuan W, Li J, Zhang Q, Saito F. Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass. Environmental Science & Technology, 2012, 46(7): 4109–4114
Wang M M, Zhang C C, Zhang F S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Management (New York, N.Y.), 2016, 51: 239–244
Kano J, Kobayashi E, Tongamp W, Miyagi S, Saito F. Nonthermal reduction of indium oxide and indium tin oxide by mechanochemical method. Journal of Alloys and Compounds, 2009, 484(1–2): 422–425
Tan Q, Li J. Recycling metals from wastes: a novel application of mechanochemistry. Environmental Science & Technology, 2015, 49(10): 5849–5861
Whitehead J A, Lawrance G A, McCluskey A. “Green” leaching: recyclable and selective leaching of gold-bearing ore in an ionic liquid. Green Chemistry, 2004, 6(7): 313–315
Han D, Row K H. Recent applications of ionic liquids in separation technology. Molecules (Basel, Switzerland), 2010, 15(4): 2405–2426
Fischer L, Falta T, Koellensperger G, Stojanovic A, Kogelnig D, Galanski M, Krachler R, Keppler B K, Hann S. Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Research, 2011, 45 (15): 4601–4614
Yang F, Kubota F, Baba Y, Kamiya N, Goto M. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of Hazardous Materials, 2013, 254–255: 79–88
Papaiconomou N, Lee J M, Salminen J, von Stosch M, Prausnitz J M. Selective extraction of copper, mercury, silver, and palladium ions from water using hydrophobic ionic liquids. Industrial & Engineering Chemistry Research, 2007, 47(15): 5080–5086