Khôi phục than bùn và địa y Sphagnum bị ảnh hưởng bởi lò luyện kim: một góc nhìn vi sinh vật

Microbial Ecology - Tập 86 - Trang 2894-2903 - 2023
James Seward1, Suzanna Bräuer2, Peter Beckett1, Pascale Roy-Léveillée3, Erik Emilson4, Shaun Watmough5, Nathan Basiliko6
1Vale Living with Lakes Centre and the School of Natural Sciences, Laurentian University, Sudbury, Canada
2Department of Biology, Appalachian State University, Boone, USA
3Department of Geography, Université Laval, Pavillon Abitibi-Price, Quebec, Canada
4Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Canada
5School of the Environment, Trent University, Peterborough, Canada
6Department of Natural Resources Management, Lakehead University, Thunder Bay, Canada

Tóm tắt

Các vùng than bùn lưu giữ khoảng một nửa carbon trong đất liền và một phần mười nước ngọt không băng. Một số hệ sinh thái quan trọng này nằm gần các lò luyện kim phát thải kim loại nặng. Để cải thiện sự hiểu biết về tác động của lò luyện kim và khả năng phục hồi sau các biện pháp kiểm soát ô nhiễm ban đầu vào những năm 1970 (khoảng 50 năm khả năng phục hồi), chúng tôi đã lấy mẫu than bùn dọc theo một khoảng cách 134 km từ một lò luyện kim ở Sudbury, Ontario, Canada, khu vực với hơn một thế kỷ hoạt động khai thác nickel (Ni) và đồng (Cu). Công việc này nhằm đánh giá sự thay đổi có thể của cấu trúc cộng đồng vi khuẩn và vi sinh vật cổ trong địa y Sphagnum và lớp than bùn bên dưới trong các đầm lầy nghèo bị tác động bởi lò luyện kim. Trong than bùn, nồng độ tổng Ni và Cu cao hơn (0.062–0.067 và 0.110–0.208 mg/g, tương ứng) tại các vị trí gần lò luyện kim và giảm theo hàm số mũ với khoảng cách từ lò luyện kim. Sự giảm nồng độ Ni theo hàm số mũ cũng được quan sát thấy trong Sphagnum. Kỹ thuật giải trình tự amplicon 16S rDNA cho thấy than bùn và địa y Sphagnum chứa những hệ vi sinh vật khác nhau, với than bùn chứa một cấu trúc cộng đồng đa dạng hơn. Các vi sinh vật trong Sphagnum bị chi phối bởi Proteobacteria (62.5%), tiếp theo là Acidobacteria (11.9%), không có xu hướng quan sát được theo khoảng cách từ lò luyện kim. Sự chiếm ưu thế của Acidobacteria (32.4%) và Proteobacteria (29.6%) trong than bùn được ghi nhận trên tất cả các vị trí. Không có sự biến động trong phân loại được thấy qua gradient khoảng cách hoặc từ các vị trí tham chiếu, cho thấy khả năng phục hồi của vi sinh vật hướng tới vi sinh vật của các vùng than bùn tham chiếu sau nhiều thập kỷ kiểm soát ô nhiễm. Những kết quả này nâng cao hiểu biết về vi sinh vật trong than bùn và địa y Sphagnum, cũng như miêu tả độ nhạy cảm và khả năng phục hồi của hệ sinh thái vùng than bùn.

Từ khóa

#than bùn; địa y Sphagnum; lò luyện kim; vi sinh vật; phục hồi môi trường

Tài liệu tham khảo

Tarnocai C (2006) The effect of climate change on carbon in Canadian peatlands. Glob Planet Chang 53(4). https://doi.org/10.1016/j.gloplacha.2006.03.012 Clymo RS (1984) The limits of peat bog growth. Philos Trans R Soc Lond Ser B Biol Sci 303(1117) Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17(1). https://doi.org/10.1007/s11273-008-9119-1 Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1(2). https://doi.org/10.2307/19418110248.2007.01139.x Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. Journal of Geophysical Research. Biogeosciences 112(3). https://doi.org/10.1029/2007JG000400 Juottonen H, Hynninen A, Nieminen M, Tuomivirta TT, Tuittila ES, Nousiainen H, Kell DK, Yrjälä K, Tervahauta A, Fritze H (2012) Methane-cycling microbial communities and methane emission in natural and restored peatlands. Appl Environ Microbiol 78(17). https://doi.org/10.1128/AEM.00261-12 Kitson E, Bell NGA (2020) The response of microbial communities to peatland drainage and rewetting. A review. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.582812 Lin X, Tfaily MM, Green SJ, Steinweg JM, Chanton P, Imvittaya A, Chanton JP, Cooper W, Schadt C, Kostkaa JE (2014) Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl Environ Microbiol 80(11). https://doi.org/10.1128/AEM.00206-14 Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol 13(7). https://doi.org/10.1111/j.1462-2920.2011.02491.x Dieleman CM, Branfireun BA, Mclaughlin JW, Lindo Z (2015) Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Chang Biol 21(1). https://doi.org/10.1111/gcb.12643 Yu Z, Beilman DW, Jones MC (2013) Sensitivity of northern peatland carbon dynamics to Holocene climate change. Carbon Cycling in Northern Peatlands. https://doi.org/10.1029/2008GM000822 Luke S, Preston MD, Basiliko N, Watmough SA (2015) Microbial communities, biomass, and carbon mineralization in acidic, nutrient-poor peatlands impacted by metal and acid deposition. Water Air Soil Pollut 226(2). https://doi.org/10.1007/s11270-014-2265-6 Clarke D, Rieley J (2010) Strategy for responsible peatland management. International Peat Society Gignac LD, Beckett PJ (1986) The effect of smelting operations on peatlands near Sudbury, Ontario, Canada. Can J Bot 64(6). https://doi.org/10.1139/b86-157 Freedman B, Hutchinson TC (1980) Long-term effects of smelter pollution at Sudbury, Ontario, on forest community composition. Can J Bot 58(19). https://doi.org/10.1139/b80-245 Hutchinson TC, Whitby LM (1974) Heavy-metal pollution in the Sudbury mining and smelting region of Canada, I. Soil and vegetation contamination by nickel, copper, and other metals. Environ Conserv 1(2). https://doi.org/10.1017/S0376892900004240 Bhalerao SA, Sharma AS, Poojari AC (2015) Toxicity of nickel in plants. Int J Pure Appl Biosci 3(2):345–355 Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44:143–158 Fitzpatrick CR, Mustafa Z, Viliunas J (2019) Soil microbes alter plant fitness under competition and drought. J Evol Biol 32(5). https://doi.org/10.1111/jeb.13426 Gilbert, D., & Mitchell, E. A. D. (2006). Chapter 13 Microbial diversity in Sphagnum peatlands. Developments in Earth Surface Processes, 9(C), 287–318. https://doi.org/10.1016/S0928-2025(06)09013-4 Kotsyurbenko OR, Glagolev MV, Merkel AY, Sabrekov AF, Terentieva IE (2019) Methanogenesis in soils, wetlands, and peat. Biogenesis of Hydrocarbons. https://doi.org/10.1007/978-3-319-78108-2_9 Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3). https://doi.org/10.1111/j.1461-0248.2007.01139.x Bragina A, Cardinale M, Berg C, Berg G (2013) Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale. Front Microbiol 4(DEC). https://doi.org/10.3389/fmicb.2013.00394 Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Müller H, Berg G (2014) The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol Ecol 23(18). https://doi.org/10.1111/mec.12885 Stough JMA, Kolton M, Kostka JE, Weston DJ, Pelletier DA, Wilhelm SW (2018) Diversity of active viral infections within the Sphagnum microbiome. Appl Environ Microbiol 84(23). https://doi.org/10.1128/AEM.01124-18 Souter L, Watmough SA (2016) The impact of drought and air pollution on metal profiles in peat cores. Sci Total Environ 541:1031–1040 Pucher M, Wünsch U, Weigelhofer G, Murphy K, Hein T, Graeber D (2019) StaRdom: versatile software for analyzing spectroscopic data of dissolved organic matter in R. Water 11(11). https://doi.org/10.3390/w11112366 Massicotte, P. (2019). “eemR: tools for pre-processing emission-excitation-matrix (EEM) fluorescence data.” R package version 1.1 (2019). RStudio Team (2021) RStudio: integrated development for R. RStudio, Inc., Boston, MA Bushnell B (2015) BBMap. https://Sourceforge.Net/Projects/Bbmap/AQ Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13(7). https://doi.org/10.1038/nmeth.3869 McLaren MR, Callahan BJ (2021) Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2, vol 1. Zenodo McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4). https://doi.org/10.1371/journal.pone.0061217 Newman JE et al (2023) The impact of severe pollution from smelter emissions on carbon and metal accumulation in peatlands in Ontario, Canada. Environ Pollut 320:121102 Kamal S, Varma A (2008) Peatland microbiology. Microbiology of Extreme Soils. https://doi.org/10.1007/978-3-540-74231-9_9 Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR (2016) The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol 211(1). https://doi.org/10.1111/nph.13993 Barrett SE, Watmough SA (2015) Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions. Environ Pollut 206:122–132. https://doi.org/10.1016/J.ENVPOL.2015.06.021 Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L, Tuittila ES, Fritze H (2012) Water dispersal of methanotrophic bacteria maintains functional methane oxidation in Sphagnum mosses. Front Microbiol 3(JAN). https://doi.org/10.3389/fmicb.2012.00015 Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the baltic sea coast. Appl Environ Microbiol 70(11). https://doi.org/10.1128/AEM.70.11.6569-6579.2004 Matthies C, Erhard HP, Drake HL (1997) Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J Basic Microbiol 37(5). https://doi.org/10.1002/jobm.3620370506 Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10). https://doi.org/10.1038/ismej.2010.58 Seward J, Carson MA, Lamit LJ, Basiliko N, Yavitt JB, Lilleskov E, Schadt CW, Smith DS, Mclaughlin J, Mykytczuk N, Willims-Johnson S, Roulet N, Moore T, Harris L, Bräuer S (2020) Peatland microbial community composition is driven by a natural climate gradient. Microb Ecol 80(3). https://doi.org/10.1007/s00248-020-01510-z Bear SE, Seward JD, Lamit LJ, Basiliko N, Moore T, Lilleskov E, Yavitt JB, Schadt CW, Smith DS, McLaughlin J, Siljanen H, Mykytczuk N, Williams S, Roulet N, Harris L, Carson MA, Watmough S, Bräuer SL (2021) Beyond the usual suspects: methanogenic communities in eastern North American peatlands are also influenced by nickel and copper concentrations. FEMS Microbiol Lett 368(21–24). https://doi.org/10.1093/femsle/fnab151 Kujala K et al (2018) Microbial diversity along a gradient in peatlands treating mining-affected waters. FEMS Microbiol Ecol 94(10):fiy145 Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36(4). https://doi.org/10.1021/es0155276 Garcia JL, Ollivier BE, Whitman WB (2006) The order methanomicrobiales. Prokaryotes 3:208–230 Belova SE, Ravin NV, Pankratov TA, Rakitin AL, Ivanova AA, Beletsky AV, Mardanov AV, Damsté JSS, Dedysh SN (2018) Hydrolytic capabilities as a key to environmental success: chitinolytic and cellulolytic Acidobacteria from acidic sub-arctic soils and boreal peatlands. Front Microbiol 9(NOV). https://doi.org/10.3389/fmicb.2018.02775 Pankratov TA, Serkebaeva YM, Kulichevskaya IS, Liesack W, Dedysh SN (2008) Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2(5). https://doi.org/10.1038/ismej.2008.7 Urbanová Z, Bárta J (2016) Effects of long-term drainage on microbial community composition vary between peatland types. Soil Biol Biochem 92. https://doi.org/10.1016/j.soilbio.2015.09.017 Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75(7). https://doi.org/10.1128/AEM.02294-08 Garrity GM, Holt JG, Castenholz RW, Pierson BK, Keppen OI, Gorlenko VM (2001) Phylum BVI. Chloroflexi phy. nov. In Bergey’s manual® of systematic bacteriology. https://doi.org/10.1007/978-0-387-21609-6_23 Lee JZ, Burow LC, Woebken D, Craig Everroad R, Kubo MD, Spormann AM, Weber PK, Pett-Ridge J, Bebout BM, Hoehler TM (2014) Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Front Microbiol 5(FEB). https://doi.org/10.3389/fmicb.2014.00061 St. James AR, Lin J, Richardson RE (2021) Relationship between peat type and microbial ecology in Sphagnum-containing peatlands of the Adirondack Mountains, NY, USA. Microb Ecol 82(2). https://doi.org/10.1007/s00248-020-01651-1