Recovering turbulent flow field from local quantity measurement: turbulence modeling using ensemble-Kalman-filter-based data assimilation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dimet FL, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus Ser A Dyn Meteorol Oceanogr 38A(2):97–110
Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res Oceans 99(C5):10143–10162
Evensen G (2006) Data assimilation: the ensemble Kalman filter. Springer, New York Inc
Gao X, Wang Y, Overton N, Zupanski M, Tu X (2017) Data-assimilated computational fluid dynamics modeling of convection-diffusion-reaction problems. J Comput Sci 21:38–59
He C, Liu Y (2017) Proper orthogonal decomposition-based spatial refinement of TR-PIV realizations using high-resolution non-TR-PIV measurements. Exp Fluids 58(7):86
He C, Liu Y, Savas Y (2018) Large-eddy simulation of circular jet mixing: lip-and inner-ribbed nozzles. Comput Fluids 168:245–268
Kato H, Obayashi S (2012) Statistical approach for determining parameters of a turbulence model. In: International conference on information fusion
Kato H, Obayashi S (2013) Data assimilation for turbulent flows. In: Aiaa non-deterministic approaches conference
Kato H, Yoshizawa A, Ueno G, Obayashi S (2015) A data assimilation methodology for reconstructing turbulent flows around aircraft. J Comput Phys 283(C):559–581
Launder BE, Spalding DB (1983) The numerical computation of turbulent flows. Numerical prediction of flow, heat transfer, turbulence and combustion. Elsevier, Amsterdam, pp 96–116
Law KJH, Stuart AM, Zygalakis KC (2015) Data assimilation: a mathematical introduction. Rev Bras Meteorol 26(3):433–442
Mckay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61
Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605
Moghaddam AA, Sadaghiyani A (2018) A deep learning framework for turbulence modeling using data assimilation and feature extraction. arXiv preprint arXiv:1802.06106
Mons V, Chassaing JC, Gomez T, Sagaut P (2016) Reconstruction of unsteady viscous flows using data assimilation schemes. J Comput Phys 316(C):255–280
Spalart P, Allmaras S (1994) A one-equation turbulence model for aerodynamic flows. Rech Aerosp 1(1):5–21
Wilcox DC (1998) Turbulence modeling for CFD (Vol. 2): DCW industries La Canada, CA, pp 73-92