Recovering turbulent flow field from local quantity measurement: turbulence modeling using ensemble-Kalman-filter-based data assimilation

Zhiwen Deng1, Chuangxin He1, Xin Wen1, Yingzheng Liu1
1Gas Turbine Research Institute, Shanghai Jiao Tong University, Shanghai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dimet FL, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus Ser A Dyn Meteorol Oceanogr 38A(2):97–110

Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res Oceans 99(C5):10143–10162

Evensen G (2006) Data assimilation: the ensemble Kalman filter. Springer, New York Inc

Gao X, Wang Y, Overton N, Zupanski M, Tu X (2017) Data-assimilated computational fluid dynamics modeling of convection-diffusion-reaction problems. J Comput Sci 21:38–59

He C, Liu Y (2017) Proper orthogonal decomposition-based spatial refinement of TR-PIV realizations using high-resolution non-TR-PIV measurements. Exp Fluids 58(7):86

He C, Liu Y, Savas Y (2018) Large-eddy simulation of circular jet mixing: lip-and inner-ribbed nozzles. Comput Fluids 168:245–268

Kato H, Obayashi S (2012) Statistical approach for determining parameters of a turbulence model. In: International conference on information fusion

Kato H, Obayashi S (2013) Data assimilation for turbulent flows. In: Aiaa non-deterministic approaches conference

Kato H, Yoshizawa A, Ueno G, Obayashi S (2015) A data assimilation methodology for reconstructing turbulent flows around aircraft. J Comput Phys 283(C):559–581

Launder BE, Spalding DB (1983) The numerical computation of turbulent flows. Numerical prediction of flow, heat transfer, turbulence and combustion. Elsevier, Amsterdam, pp 96–116

Law KJH, Stuart AM, Zygalakis KC (2015) Data assimilation: a mathematical introduction. Rev Bras Meteorol 26(3):433–442

Mckay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61

Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

Moghaddam AA, Sadaghiyani A (2018) A deep learning framework for turbulence modeling using data assimilation and feature extraction. arXiv preprint arXiv:1802.06106

Mons V, Chassaing JC, Gomez T, Sagaut P (2016) Reconstruction of unsteady viscous flows using data assimilation schemes. J Comput Phys 316(C):255–280

Spalart P, Allmaras S (1994) A one-equation turbulence model for aerodynamic flows. Rech Aerosp 1(1):5–21

Wilcox DC (1988) Multiscale model for turbulent flows. AIAA J 1(11):1311–1320

Wilcox DC (1998) Turbulence modeling for CFD (Vol. 2): DCW industries La Canada, CA, pp 73-92

Zhang X, Su G, Yuan H, Chen J, Huang Q (2014) Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated. J Hazard Mater 280:143–155