Recovering context-specific gene network modules from expression data: A brief review
Tóm tắt
With the popularization of microarray experiments in biomedical laboratories, how to make contextspecific knowledge discovery from expression data becomes a hot topic. While the static “reference networks” for key model organisms are nearly at hand, the endeavors to recover context-specific network modules are still at the beginning. Currently, this is achieved through filtering existing edges of the ensemble reference network or constructing gene networks ab initio. In this paper, we briefly review recent progress in the field and point out some research directions awaiting improved work, including expression-data-guided revision of reference networks.
Tài liệu tham khảo
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin GM, Sherlock G (2000). Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet, 25(1): 25–29
Bader G D, Betel D, Hogue C W (2003). BIND: the biomolecular interaction network database. Nucleic Acids Res, 31(1): 248–250
Barrett T, Edgar R (2006). Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol, 411: 352–369
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball C A, Causton H C, Gaasterland T, Glenisson P, Holstege F C, Kim I F, Markowitz V, Matese J C, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001). Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet, 29(4): 365–371
Bredel M, Bredel C, Juric D, Harsh G R, Vogel H, Recht L D, Sikic B I (2005). Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res, 65(19): 8679–8689
Breitling R, Amtmann A, Herzyk P (2004). Graph-based iterative Group Analysis enhances microarray interpretation. BMC Bioinformatics, 5: 100
Butte A J, Tamayo P, Slonim D, Golub T R, Kohane I S (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U SA, 97(22): 12182–12186
Caspi R, Foerster H, Fulcher C A, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick C J, Rhee S Y, Tissier C, Zhang P, Karp P D (2006). MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res, 34(Database issue): D511–D516
Eriksson R, Olsson B (2004). Adapting genetic regulatory models by genetic programming. Biosystems, 76(1–3): 217–227
Fang Z, Luo Q, Zhang G, Li Y (2006). Biological networks to the analysis of microarray data. Prog Natural Sci, 16(12): 1242–1251
Gama-Castro S, Jiménez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A, Penaloza-Spinola MI, Contreras-Moreira B, Segura-Salazar J, Muñiz-Rascado L, Martínez-Flores I, Salgado H, Bonavides-Martinez C, Abreu-Goodger C, Rodríguez-Penagos C, Miranda-Ríos J, Morett E, Merino E, Huerta AM, Treviño-Quintanilla L, Collado-Vides J. (2008). RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res, 36(Database issue): D120–D124
Guo Z, Li Y, Gong X, Yao C, MaW,Wang D, Zhu J, Zhang M, Yang D, Wang J (2007). Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics, 23(16): 2121–2128
Han J D, Bertin N, Hao T, Goldberg D S, Berriz G F, Zhang LV, Dupuy D, Walhout A J, Cusick M E, Roth F P, Vidal M (2004). Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 430(6995): 88–93
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004). IntAct: an open source molecular interaction database. Nucleic Acids Res, 32(Database issue): D452–D455
Huang Y, Li H, Hu H, Yan X, Waterman M S, Huang H, Zhou X J (2007). Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics, 23(13): i222–i229
Ideker T, Ozier O, Schwikowski B, Siegel A F (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18(Suppl 1): S233–S240
Jiang W, Li X, Rao S, Wang L, Du L, Li C, Wu C, Wang H, Wang Y, Yang B (2008). Constructing disease-specific gene networks using pair-wise relevance metric: application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements. BMC Syst Biol, 2: 72
Kurhekar M P, Adak S, Jhunjhunwala S, Raghupathy K (2002). Genome-wide pathway analysis and visualization using gene expression data. Pac Symp Biocomput, 462–473
Lee H K, Braynen W, Keshav K, Pavlidis P (2005). ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinformatics, 6: 269
Li S, Wu L, Zhang Z (2006). Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach. Bioinformatics, 22(17): 2143–2150
Liu X, Sivaganesan S, Yeung K Y, Guo J, Bumgarner R E, Medvedovic M (2006). Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset. Bioinformatics, 22(14): 1737–1744
Lowe H J, Barnett G O (1994). Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. JAMA, 271(14): 1103–1108
Lu X, Jain V V, Finn P W, Perkins D L (2007). Hubs in biological interaction networks exhibit low changes in expression in experimental asthma. Mol Syst Biol, 3: 98
Myers C L, Barrett D R, Hibbs M A, Huttenhower C, Troyanskaya O G (2006). Finding function: evaluation method for functional genomic data. BMC Genomics, 7: 187
Myers C L, Troyanskaya O G (2007). Context-sensitive data integration and prediction of biological networks. Bioinformatics, 23(17): 2322–2330
Patil K R, Nielsen J (2005). Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A, 102(8): 2685–2689
Peri S, Navarro J D, Amanchy R, Kristiansen T Z, Jonnalagadda C K, Surendranath V, Niranjan V, Muthusamy B, Gandhi T K, Gronborg M, Ibarrola N, Deshpande N, Shanker K, Shivashankar H N, Rashmi B P, Ramya M A, Zhao Z, Chandrika K N, Padma N, Harsha H C, Yatish A J, Kavitha M P, Menezes M, Choudhury D R, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy M, Anand S K, Madavan V, Joseph A, Wong G W, Schiemann W P, Constantinescu S N, Huang L, Khosravi-Far R, Steen H, Tewari M, Ghaffari S, Blobe G C, Dang C V, Garcia J G, Pevsner J, Jensen O N, Roepstorff P, Deshpande K S, Chinnaiyan AM, Hamosh A, Chakravarti A, Pandey A (2003). Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res, 13(10): 2363–2371
Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M (2001). Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol, 314(5): 1053–1066
Rachlin J, Cohen D D, Cantor C, Kasif S (2006). Biological context networks: a mosaic view of the interactome. Mol Syst Biol, 2: 66
Ravasz E, Somera A L, Mongru D A, Oltvai Z N, Barabási A L (2002). Hierarchical organization of modularity in metabolic networks. Science, 297: 1551–1556
Rocca-Serra P, Brazma A, Parkinson H, Sarkans U, Shojatalab M, Contrino S, Vilo J, Abeygunawardena N, Mukherjee G, Holloway E, Kapushesky M, Kemmeren P, Lara G G, Oezcimen A, Sansone S A (2003). ArrayExpress: a public database of gene expression data at EBI. C R Biol, 326(10,11): 1075–1078
Schacherer F, Choi C, Gotze U, Krull M, Pistor S, Wingender E (2001). The TRANSPATH signal transduction database: a knowledge base on signal transduction networks. Bioinformatics, 17(11): 1053–1057
Scott M S, Perkins T, Bunnell S, Pepin F, Thomas D Y, Hallett M (2005). Identifying regulatory subnetworks for a set of genes. Mol Cell Proteomics, 4(5): 683–692
Shrager J, Langley P, Pohorille A (2002). Guiding revision of regulatory models with expression data.” Pac Symp Biocomput, 486–497
Srinivasan B S, Shah N H, Flannick J A, Abeliuk E, Novak A F, Batzoglou S (2007). Current progress in network research: toward reference networks for key model organisms. Brief Bioinform, 8(5): 318–332
Tu K, Yu H, Li Y X (2006). Combining gene expression profiles and protein-protein interaction data to infer gene functions. J Biotechnol, 124(3): 475–485
Wang Z, Zhu X G, Chen Y, Li Y, Hou J, Liu L (2006). Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria. BMC Genomics, 7: 100
Xiao G, Pan W (2005). Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data. J Bioinform Comput Biol, 3(6): 1371–1389
Xu M, Kao M C, Nunez-Iglesias J, Nevins J R, West M, Zhou X J (2008). An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer. BMC Genomics, 9(Suppl 1): S12
Yu Y H, Kuo H K, Chang K W (2008). The evolving transcriptome of head and neck squamous cell carcinoma: a systematic review. PLoS ONE, 3(9): e3215
Zhou X, Kao M C, Wong W H (2002). Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci U S A, 99(20): 12783–12788
Zhou X J, Kao M C, Huang H, Wong A, Nunez-Iglesias J, Primig M, Aparicio O M, Finch C E, Morgan T E, Wong W H (2005). Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat Biotechnol, 23(2): 238–243
Zien A, Küffner R, Zimmer R, Lengauer T (2000). Analysis of gene expression data with pathway scores. Proc Int Conf Intell Syst Mol Biol, 8: 407–417