Recovering Genetic Regulatory Networks from Chromatin Immunoprecipitation and Steady-State Microarray Data

Springer Science and Business Media LLC - Tập 2008 - Trang 1-12 - 2008
Wentao Zhao1, Erchin Serpedin1, Edward R Dougherty2
1Electrical and Computer Engineering Department, Texas A&M University, College Station, USA
2The Translational Genomics Research Institute (TGen), Phoenix, USA

Tóm tắt

Recent advances in high-throughput DNA microarrays and chromatin immunoprecipitation (ChIP) assays have enabled the learning of the structure and functionality of genetic regulatory networks. In light of these heterogeneous data sets, this paper proposes a novel approach for reconstruction of genetic regulatory networks based on the posterior probabilities of gene regulations. Built within the framework of Bayesian statistics and computational Monte Carlo techniques, the proposed approach prevents the dichotomy of classifying gene interactions as either being connected or disconnected, thereby it reduces significantly the inference errors. Simulation results corroborate the superior performance of the proposed approach relative to the existing state-of-the-art algorithms. A genetic regulatory network for Saccharomyces cerevisiae is inferred based on the published real data sets, and biological meaningful results are discussed.

Tài liệu tham khảo

Kauffman SA: Metabolic stability and epigenesist in randomly constructed genetic nets. Journal of Theoretical Biology 1969,22(3):437-467. 10.1016/0022-5193(69)90015-0 Murphy K, Mia S: Modelling gene expression data using dynamic Bayesian networks. Computer Science Division, University of California, Berkeley, Calif, USA; 1999. Sebastiani P, Abad MM, Ramoni M: Bayesian networks. In The Data Mining and Knowledge Discovery Handbook. Springer, New York, NY, USA; 2005:193-230. Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002,18(2):261-274. 10.1093/bioinformatics/18.2.261 Tabus I, Astola J: On the use of MDL principle in gene expression prediction. Journal on Applied Signal Processing 2001,2001(4):297-303. Öktem H, Pearson R, Yli-Harja O, Nicorici D, Egiazarian K, Astola J, et al.: A computational model for simulating continuous time Boolean networks. Proceedings of IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS '02) Raleigh, NC, USA October 2002 Murphy K: Bayes Net Toolbox for Matlab.[http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html] Leray P: Structure learning toolbox of Bayesian Networks.[http://bnt.insa-rouen.fr/ajouts.html] Friedman N, Elidan G: Bayesian Network learning tool.[http://www.cs.huji.ac.il/labs/compbio/LibB/programs.html#LearnBayes] Rao A, Hero AO, States DJ, Engel JD: Manifold embedding for understanding mechanisms of transcriptional regulation. Proceedings of IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS '06), College Station, Tex, USA, May 2006 3-4. Liang S, Fuhrman S, Somogyi R: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Proceedings of the Pacific Symposium on Biocomputing (PSB '98), Maui, Hawaii, USA, January 1998 18-29. Luna IT, Yin Y, Huang Y, Padillo DPR, Perez MCC, Wang Y: Uncovering gene regulatory networks using variational Bayes variable selection. Proceedings of IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS '06), College Station, Tex, USA, May 2006 111-112. Zhao W, Serpedin E, Dougherty ER: Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 2006,22(17):2129-2135. 10.1093/bioinformatics/btl364 Butte AJ, Kohane IS: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Proceedings of the Pacific Symposium on Biocomputing (PSB '00), Honolulu, Hawaii, USA, January 2000 418-429. Rogers S, Girolami M: A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 2005,21(14):3131-3137. 10.1093/bioinformatics/bti487 Rice JJ, Tu Y, Stolovitzky G: Reconstructing biological networks using conditional correlation analysis. Bioinformatics 2005,21(6):765-773. 10.1093/bioinformatics/bti064 Yeung MKS, Tegnér J, Collins JJ: Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences of the United States of America 2002,99(9):6163-6168. 10.1073/pnas.092576199 Margolin AA, Nemenman I, Basso K, et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006,7(supplement 1, S7):1-15. Simon I, Siegfried Z, Ernst J, Bar-Joseph Z: Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nature Biotechnology 2005,23(12):1503-1508. 10.1038/nbt1164 Bernard A, Hartemink AJ: Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Proceedings of the Pacific Symposium on Biocomputing (PSB '05), The Big Island of Hawaii, Hawaii, USA, January 2005 459-470. Hartemink AJ, Gifford DK, Jaakkola TS, Young RA: Combining location and expression data for principled discovery of genetic regulatory network models. Proceedings of the Pacific Symposium on Biocomputing (PSB '02), Lihue, Hawaii, USA, January 2002 437-449. Cooper GF, Herskovits E: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 1992,9(4):309-347. Heckerman D, Geiger D, Chickering DM: Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 1995,20(3):197-243. Chow C, Liu C: Approximating discrete probability distributions with dependence trees. IEEE Transaction on Information Theory 1968,14(3):462-467. 10.1109/TIT.1968.1054142 Pearl J: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco, Calif, USA; 1988. Friedman N, Cai L, Xie XS: Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Physical Review Letters 2006.,97(16): 4 pages Wessels LF, van Someren EP, Reinders MJ: A comparison of genetic network models. Proceedings of the 6th Pacific Symposium on Biocomputing (PSB '01), The Big Island of Hawaii, Hawaii, USA, January 2001 508-519. Savageau MA: Rules for the evolution of gene circuitry. Proceedings of the 3rd Pacific Symposium on Biocomputing (PSB '98), Maui, Hawaii, USA, January 1998 54-65. Edelstein-Keshet L: Mathematical Models in Biology. Random House, New York, NY, USA; 1988. Allison DB, Gadbury GL, Heo M, et al.: A mixture model approach for the analysis of microarray gene expression data. Computational Statistics & Data Analysis 2002,39(1):1-20. 10.1016/S0167-9473(01)00046-9 Guelzim N, Bottani S, Bourgine P, Képès F: Topological and causal structure of the yeast transcriptional regulatory network. Nature Genetics 2002,31(1):60-63. 10.1038/ng873 Giot L, Bader JS, Brouwer C, et al.: A protein interaction map of Drosophila melanogaster . Science 2003,302(5651):1727-1736. 10.1126/science.1090289 Lee TI, Rinaldi NJ, Robert F, et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae . Science 2002,298(5594):799-804. 10.1126/science.1075090 Ihler A: Kernel density estimation software.[http://www.ics.uci.edu/~ihler/code/] Mnaimneh S, Davierwala AP, Haynes J, et al.: Exploration of essential gene functions via titratable promoter alleles. Cell 2004,118(1):31-44. 10.1016/j.cell.2004.06.013 Gasch AP, Spellman PT, Kao CM, et al.: Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 2000,11(12):4241-4257. Eastmond DL, Nelson HCM: Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. Journal of Biological Chemistry 2006,281(43):32909-32921. 10.1074/jbc.M602454200 Furuchi T, Ishikawa H, Miura N, et al.: Two nuclear proteins, Cin5 and Ydr259c, confer resistance to cisplatin in Saccharomyces cerevisiae . Molecular Pharmacology 2001,59(3):470-474. Horak CE, Luscombe NM, Qian J, et al.: Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae . Genes & Development 2002,16(23):3017-3033. 10.1101/gad.1039602 Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD: Regulation of longevity and stress resistance by Sch9 in yeast. Science 2001,292(5515):288-290. 10.1126/science.1059497 Hartemink AJ: Reverse engineering gene regulatory networks. Nature Biotechnology 2005,23(5):554-555. 10.1038/nbt0505-554