Reconstruction of the spatial structure of inulinase from Kluyveromyces marxianus to find regulatory pathways of its catalytic activity

Biophysics - Tập 61 - Trang 565-571 - 2016
A. V. Abdullatypov1, M. S. Kondratyev2, M. G. Holyavka3, V. G. Artyukhov3
1Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
2Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, Russia
3Voronezh State University, Voronezh, Russia

Tóm tắt

Reconstruction of the spatial structure of inulinase (EC 3.2.1.7) from Kluyveromyces marxianus (an enzyme that hydrolyzes inulin and other fructose-based polymers to fructose) was carried out by highthroughput computational modeling. A structural model of a closely related homologous protein, viz., invertase from yeast Saccharomyces cerevisiae (PDB-ID: 4EQV), was used as a template. The reconstructed model can be used for computer calculations for optimizing the biotechnological feasibility of inulinase.

Tài liệu tham khảo

P. J. Watkins, ABC of Diabetes, 5th ed. (Wiley—Blackwell, Chichester, 2003; Binom, Moscow, 2006). E. P. Kamysheva and G. M. Pokalev, Diabetes Mellitus: Current Concepts, Clinical Symptoms, Syndromes, and Treatment Tactics (Nizhny Novgorod Medical Academy, Nizhny Novgorod, 1999) [in Russian]. I. V. Brusenskaya, All About Diabetes (Feniks, Rostovon-Don, 1999) [in Russian]. O. S. Korneeva, Carbohydrases: Preparative Isolation, Structure, and Mechanism of Action on Oligo-and Polysaccharides (Voronezh. State Univ., Voronezh, 2001) [in Russian]. M. G. Kholyavka, T. A. Kovaleva, S. A. Volkova, and V. G. Artyukhov, Vestn. Voronezh. Gos. Univ., Ser. Khim. Biol. Farmats., 3, 86 (2014). K. Ohta, H. Akimoto and S. Moriyama. J. Appl. Glycosci. 51, 247 (2004). V. G. Artyukhov, T. A. Kovaleva, M. G. Kholyavka, et al., Appl. Biochem. Microbiol. 46 (4), 385 (2010). T. A. Kovaleva, M. G. Holyavka, and V. G. Artyukhov, Biotechnol. Russia 1, 43 (2012). T. A. Kovaleva, M. G. Kholyavka, and A. S. Takha, Sorbts. Khtomatogr. Protsessy 7 (5), 804 (2007). V. G. Artyukhov, M. G. Holyavka, and T. A. Kovaleva, Biophysics (Moscow) 58 (4), 493 (2013). D. Letca, C. Hemmerling, M. Walter, et al., Roum. Biotechnol. Lett. 9 (5), 1879 (2004). Y. Makino, P. S. C. Lima, F. M. Filho, and M. I. Rodrigues, Brazil. J. Chem. Eng. 22 (4), 539 (2005). E. Barranco-Florido, M. Garcia-Garibay, L. Gomez-Ruiz, and A. Azaola, Process Biochem. 37, 513 (2001). S. J. Kalil, F. Maugeri, and M. I. Rodrigues, Process Biochem. 40, 581 (2005). R. S. Singh, R. Dhaliwal, and M. Puri, J. Microbiol. Biotechnol. 17 (5), 733 (2007). T. A. Kovaleva, M. G. Kholyavka, and A. S. Takha, Biotekhnologiya 2, 55 (2009). T. A. Kovaleva, M. G. Kholyavka, and S. S. Bogdanova, Bull. Exp. Biol. Med. 148 (1), 39 (2009). M. S. Kondratyev, M. G. Kholyavka, A. V. Kabanov, et al., J. Biomol. Struct. Dynam. 33 (Suppl. 1), 128 (2015). M. G. Holyavka, M. S. Kondratyev, A. A. Samchenko, et al., Computers Biol. Med. 71, 198 (2016). M. G. Kholyavka, T. A. Kovaleva, S. I. Karpov, et al., Biophysics (Moscow) 59 (2), 223 (2014). V. G. Artyukhov, T. A. Kovaleva, M. G. Kholyavka, et al., Biophysics (Moscow) 54 (6), 675 (2009). T. A. Kovaleva and M. G. Kholyavka, Vopr. Biol. Med. Farm. Khim. 1, 3 (2011). M. G. Holyavka, T. A. Kovaleva, M. V. Grechkina, et al., Appl. Biochem. Microbiol. 50 (1), 10 (2014). M. A. Marti-Renom, A. Stuart, A. Fiser, et al., Annu. Rev. Biophys. Biomol. Struct. 29, 291 (2000). B. Webb and A. Sali, in Current Protocols in Bioinformatics (Wiley, 2014), pp. 5.6.1–5.6.32. A. Sali and T. L. Blundell. J. Mol. Biol. 234, 779 (1993). A. V. Abdullatypov, N. A. Zorin, and A. A. Tsygankov, Biochemistry (Moscow) 79 (8), 805 (2014). A. V. Abdullatypov and A. A. Tsygankov, Photosynth. Res. 125, 341 (2015). A. V. Abdullatypov and A. A. Tsygankov, Computer Research and Modeling 5, 737 (2013). R. J. Bergkamp, T. C. Bootsman, H. Y. Toschka, et al., J. Appl. Microbiol. Biotechnol. 40 (2–3), 309 (1993). S. F. Altschul, W. Gish, W. Miller, et al., J. Mol. Biol. 215 (3), 403 (1990). H. M. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res 28, 235 (2000). A. D. MacKerell, Jr., D. Bashford, M. Bellott, et al., J. Phys. Chem. B 102, 3586 (1998). M. Shen and A. Sali, Prot. Sci. 15, 2507 (2006). B. John and A. Sali, Nucleic Acids Res 31 (14), 3982 (2003). F. Melo, R. Sánchez, and A. Sali, Prot. Sci. 11 (2), 430 (2002). M. A. Sainz-Polo, M. Ramirez-Escudero, A. Lafraya, et al., J. Biol. Chem. 288, 9755 (2013). G. A. Bezerra, E. Dobrovetsky, R. Viertlmayr, et al., Proc. Natl. Acad. Sci. USA. 109, 6525 (2012). Z. W. Chen, M. Koh, G. Van Driessche, et al., Science 266, 430 (1994). J. Pouyez, A. Mayard, A. M. Vandamme, et al., Biochimie 94, 2423 (2012). T. A. Kovaleva, M. G. Kholyavka, M. I. Kalashnikova, and D. A. Slivkin, Tekhnol. Zhivykh Sistem 1, 60 (2011). O. Trott and A. J. Olson. J. Comput. Chem. 31, 455 (2010).