Reconstruction of missing data in multivariate processes with applications to causality analysis

Piyush Agarwal1, Arun K. Tangirala1
1Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Imtiaz, S., Shah, S.: Treatment of missing values in process data analysis. Can. J. Chem. Eng. 86(5), 838–858 (2008)

Lakshminarayan, K., Harp, S.A., Samad, T.: Imputation of missing data in industrial databases. Appl. Intell. 11(3), 259–275 (1999)

Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39(2), 447–462 (1976)

Kasam, A.A., Lee, B.D., Paredis, C.J.: Statistical methods for interpolating missing meteorological data for use in building simulation. In: Building Simulation, vol. 7, pp. 455–465. Tsinghua University Press, Springer (2014). https://doi.org/10.1007/s12273-014-0174-7

Ferrari, G.T., Ozaki, V.: Missing data imputation of climate datasets: implications to modeling extreme drought events. Rev. Bras. Meteorol. 29(1), 21–28 (2014)

Kourti, T., MacGregor, J.F.: Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemom. Intell. Lab. Syst. 28(1), 3–21 (1995)

Scargle, J.D.: Studies in astronomical time-series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982)

Warga, A.: Bond returns, liquidity, and missing data. J. Financial Quant. Anal. 27(4), 605–617 (1992)

Babu, P., Stoica, P.: Spectral analysis of nonuniformly sampled data-a review. Digit. Signal Process. 20(2), 359–378 (2010)

Scargle, J.D.: Studies in astronomical time-series analysis. iii-fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophys. J. 343, 874–887 (1989)

Hocke, K., Kämpfer, N.: Gap filling and noise reduction of unevenly sampled data by means of the Lomb–Scargle periodogram. Atmos. Chem. Phys. 9(12), 4197–4206 (2009)

Hocke, K.: Phase estimation with the lomb-scargle periodogram method. In: Annales Geophysicae, vol. 16, pp. 356–358. Copernicus (1998)

Schafer, J.L., Olsen, M.K.: Multiple imputation for multivariate missing-data problems: a data analyst’s perspective. Multivar. Behav. Res. 33(4), 545–571 (1998)

Isaksson, A.J.: Identification of arx-models subject to missing data. IEEE Trans. Autom. Control 38(5), 813–819 (1993)

de Waele, S., Broersen, P.M.T.: Error measures for resampled irregular data. IEEE Trans. Instrum. Meas. 49(2), 216–222 (2000). https://doi.org/10.1109/19.843052

Liu, S., Molenaar, P.C.: ivar: a program for imputing missing data in multivariate time-series using vector autoregressive models. Behav. Res. Methods 46(4), 1138–1148 (2014)

Junger, W., de Leon, A.P.: Imputation of missing data in time-series for air pollutants. Atmos. Environ. 102, 96–104 (2015)

Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

Baccalá, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84(6), 463–474 (2001)

Gigi, S., Tangirala, A.: Reconstructing plant connectivity using directed spectral decomposition. IFAC Proc. Vol. 45(15), 481–486 (2012)

Granger, C.W.: Investi gating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969). https://doi.org/10.2307/1912791

Gigi, S., Tangirala, A.K.: Quantitative analysis of directional strengths in jointly stationary linear multivariate processes. Biol. Cybern. 103(2), 119–133 (2010)

Eichler, M.: A graphical approach for evaluating effective connectivity in neural systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 953–967 (2005)

Eichler, M.: On the evaluation of information flow in multivariate systems by the directed transfer function. Biol. Cybern. 94(6), 469–482 (2006)

Bahadori, M.T., Liu, Y.: Granger causality analysis in irregular time-series. In: SDM, pp. 660–671. SIAM (2012)

Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 1st edn. Springer, Berlin (2010)

Candes, E.J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 346(9), 589–592 (2008)

Perepu, S.K., Tangirala, A.K.: Reconstruction of missing data using compressed sensing techniques with adaptive dictionary. J. Process Control 47, 175–190 (2016)

Wiener, N.: The theory of prediction. Mod. Math. Eng. 1, 125–139 (1956)

Granger, C.W.: Some recent development in a concept of causality. J. Econom. 39(1), 199–211 (1988)

Lütkepohl, H.: New Introduction to Multiple Time-Series Analysis. Springer, Berlin (2005)

Garg, A., Tangirala, A.K.: Interaction assessment in multivariable control systems through causality analysis. IFAC Proc. Vol. 47(1), 585–592 (2014)

Ambat, S.K., Hari, K., et al.: Fusion of sparse reconstruction algorithms for multiple measurement vectors. arXiv preprint arXiv:1504.01705 (2015)

Wooten, R.: Statistical analysis of the relationship between wind speed, pressure and temperature. In: Sixth International Conference on Dynamic Systems and Applications (2011)