Reconstruction of missing data in multivariate processes with applications to causality analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Imtiaz, S., Shah, S.: Treatment of missing values in process data analysis. Can. J. Chem. Eng. 86(5), 838–858 (2008)
Lakshminarayan, K., Harp, S.A., Samad, T.: Imputation of missing data in industrial databases. Appl. Intell. 11(3), 259–275 (1999)
Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39(2), 447–462 (1976)
Kasam, A.A., Lee, B.D., Paredis, C.J.: Statistical methods for interpolating missing meteorological data for use in building simulation. In: Building Simulation, vol. 7, pp. 455–465. Tsinghua University Press, Springer (2014). https://doi.org/10.1007/s12273-014-0174-7
Ferrari, G.T., Ozaki, V.: Missing data imputation of climate datasets: implications to modeling extreme drought events. Rev. Bras. Meteorol. 29(1), 21–28 (2014)
Kourti, T., MacGregor, J.F.: Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemom. Intell. Lab. Syst. 28(1), 3–21 (1995)
Scargle, J.D.: Studies in astronomical time-series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982)
Warga, A.: Bond returns, liquidity, and missing data. J. Financial Quant. Anal. 27(4), 605–617 (1992)
Babu, P., Stoica, P.: Spectral analysis of nonuniformly sampled data-a review. Digit. Signal Process. 20(2), 359–378 (2010)
Scargle, J.D.: Studies in astronomical time-series analysis. iii-fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophys. J. 343, 874–887 (1989)
Hocke, K., Kämpfer, N.: Gap filling and noise reduction of unevenly sampled data by means of the Lomb–Scargle periodogram. Atmos. Chem. Phys. 9(12), 4197–4206 (2009)
Hocke, K.: Phase estimation with the lomb-scargle periodogram method. In: Annales Geophysicae, vol. 16, pp. 356–358. Copernicus (1998)
Schafer, J.L., Olsen, M.K.: Multiple imputation for multivariate missing-data problems: a data analyst’s perspective. Multivar. Behav. Res. 33(4), 545–571 (1998)
Isaksson, A.J.: Identification of arx-models subject to missing data. IEEE Trans. Autom. Control 38(5), 813–819 (1993)
de Waele, S., Broersen, P.M.T.: Error measures for resampled irregular data. IEEE Trans. Instrum. Meas. 49(2), 216–222 (2000). https://doi.org/10.1109/19.843052
Liu, S., Molenaar, P.C.: ivar: a program for imputing missing data in multivariate time-series using vector autoregressive models. Behav. Res. Methods 46(4), 1138–1148 (2014)
Junger, W., de Leon, A.P.: Imputation of missing data in time-series for air pollutants. Atmos. Environ. 102, 96–104 (2015)
Baccalá, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84(6), 463–474 (2001)
Gigi, S., Tangirala, A.: Reconstructing plant connectivity using directed spectral decomposition. IFAC Proc. Vol. 45(15), 481–486 (2012)
Granger, C.W.: Investi gating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969). https://doi.org/10.2307/1912791
Gigi, S., Tangirala, A.K.: Quantitative analysis of directional strengths in jointly stationary linear multivariate processes. Biol. Cybern. 103(2), 119–133 (2010)
Eichler, M.: A graphical approach for evaluating effective connectivity in neural systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 953–967 (2005)
Eichler, M.: On the evaluation of information flow in multivariate systems by the directed transfer function. Biol. Cybern. 94(6), 469–482 (2006)
Bahadori, M.T., Liu, Y.: Granger causality analysis in irregular time-series. In: SDM, pp. 660–671. SIAM (2012)
Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 1st edn. Springer, Berlin (2010)
Candes, E.J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 346(9), 589–592 (2008)
Perepu, S.K., Tangirala, A.K.: Reconstruction of missing data using compressed sensing techniques with adaptive dictionary. J. Process Control 47, 175–190 (2016)
Wiener, N.: The theory of prediction. Mod. Math. Eng. 1, 125–139 (1956)
Garg, A., Tangirala, A.K.: Interaction assessment in multivariable control systems through causality analysis. IFAC Proc. Vol. 47(1), 585–592 (2014)
Ambat, S.K., Hari, K., et al.: Fusion of sparse reconstruction algorithms for multiple measurement vectors. arXiv preprint arXiv:1504.01705 (2015)