Reconstructing Plane Quartics from Their Invariants

Discrete & Computational Geometry - Tập 63 Số 1 - Trang 73-113 - 2020
Reynald Lercier1, Christophe Ritzenthaler1, Jeroen Sijsling2
1Institut de Recherche Mathématique de Rennes
2Universität Ulm - Ulm University [Ulm, Allemagne]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Artebani, M., Quispe, S.: Fields of moduli and fields of definition of odd signature curves. Arch. Math. (Basel) 99(4), 333–344 (2012)

Basson, R.: Arithmétique des espaces de modules des courbes hyperelliptiques de genre $$3$$ 3 en caractéristique positive. PhD thesis, Université de Rennes 1 (2015). https://tel.archives-ouvertes.fr/tel-01170922

Böhning, C.: The rationality of the moduli space of curves of genus 3 after P. Katsylo. In: Bogomolov, F., Tschinkel, Yu., (eds.) Cohomological and Geometric Approaches to Rationality Problems. Progress in Mathematics, vol. 282, pp. 17–53. Birkhäuser, Boston (2010)

Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

Brouwer, A.E., Popoviciu, M.: The invariants of the binary decimic. J. Symb. Comput. 45(8), 837–843 (2010)

Brouwer, A.E., Popoviciu, M.: The invariants of the binary nonic. J. Symb. Comput. 45(6), 709–720 (2010)

Clebsch, A.: Theorie der binären algebraischen Formen. B.G. Teubner, Leipzig (1872)

Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton (2006)

Dixmier, J.: On the projective invariants of quartic plane curves. Adv. Math. 64(3), 279–304 (1987)

Dolgachev, I.: Lectures on Invariant Theory. London Mathematical Society Lecture Note Series, 296th edn. Cambridge University Press, Cambridge (2003)

Elsenhans, A.-S.: Explicit computations of invariants of plane quartic curves. J. Symb. Comput. 68(2), 109–115 (2015)

Freiherr von Gall, A.: Das vollständige Formensystem einer binären Form achter Ordnung. Math. Ann. 17(1), 31–51, 139–152, 456 (1880)

Freiherr von Gall, A.: Das vollständige Formensystem der binären Form 7ter Ordnung. Math. Ann. 31(3), 318–336 (1888)

Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics, vol. 129. Springer, New York (1991)

Gatti, V., Viniberghi, E.: Spinors of $$13$$ 13 -dimensional space. Adv. Math. 30(2), 137–155 (1978)

Girard, M., Kohel, D.R.: Classification of genus 3 curves in special strata of the moduli space. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number Theory. Lecture Notes in Computer Science, vol. 4076, pp. 346–360. Springer, Berlin (2006)

Gordan, P.: Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist. J. Reine Angew. Math. 69, 323–354 (1868)

Hashimoto, M.: Equivariant total ring of fractions and factoriality of rings generated by semi-invariants. Commun. Algebra 43(4), 1524–1562 (2015)

Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge: Translated from the German and with a preface by Reinhard C. Laubenbacher, Edited and with an introduction by Bernd Sturmfels (1993)

Katsylo, P.I.: On the birational geometry of the space of ternary quartics. In: Vinberg, E.B. (ed.) Lie Groups, Their Discrete Subgroups, and Invariant Theory. Advances in Soviet Mathematics, vol. 8, pp. 95–103. American Mathematical Society, Providence (1992)

Katsylo, P.: Rationality of the moduli variety of curves of genus 3. Comment. Math. Helv. 71(4), 507–524 (1996)

Kılıçer, P., Labrande, H., Lercier, R., Ritzenthaler, C., Sijsling, J., Streng, M.: Plane quartics over $${\mathbb{Q}}$$ Q with complex multiplication. Acta Arith. 185(2), 127–156 (2018). arXiv:1701.06489

Kraft, H., Procesi, C.: Classical Invariant Theory. A Primer (1996). Notes available at https://www2.bc.edu/benjamin-howard/MATH8845/classical_invariant_theory.pdf

Lercier, R., Lorenzo García, E., Ritzenthaler, C.: Reduction type of non-hyperelliptic genus 3 curves (2018). arXiv:1803.05816

Lercier, R., Ritzenthaler, C.: Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects. J. Algebra 372, 595–636 (2012)

Lercier, R., Ritzenthaler, C., Sijsling, J.: Fast computation of isomorphisms of hyperelliptic curves and explicit Galois descent. In: Howe, E.W., Kedlaya, K.S. (eds.) Proceedings of the Tenth Algorithmic Number Theory Symposium, pp. 463–486. Mathematical Sciences Publishers, Berkeley (2012)

Lercier, R., Ritzenthaler, C., Rovetta, F., Sijsling, J.: Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields. LMS J. Comput. Math. 17(Suppl. A), 128–147 (2014)

Lercier, R., Ritzenthaler, C., Sijsling, J.: quartic $$_{-}$$ - reconstruction: a Magma package for reconstructing plane quartics from Dixmier–Ohno invariants. https://github.com/JRSijsling/quartic_reconstruction/ (2016)

Looijenga, E.: Invariants of quartic plane curves as automorphic forms. In: Keum, J., Kondō, S. (eds.) Algebraic Geometry. Contemporary Mathematics, vol. 422, pp. 107–120. American Mathematical Society, Providence (2007)

Lorenzo García, E.: Twists of non-hyperelliptic curves. Rev. Mat. Iberoam. 33(1), 169–182 (2017)

Maeda, T.: On the invariant field of binary octavics. Hiroshima Math. J. 20(3), 619–632 (1990)

Mestre, J.-F.: Construction de courbes de genre $$2$$ 2 à partir de leurs modules. In: Mora, T., Traverso, C. (eds.) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol. 94, pp. 313–334. Birkhäuser, Boston (1991)

Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, 3rd edn. Springer, Berlin (1994)

Olive, M.: About Gordan’s algorithm for binary forms. Found. Comput. Math. 17(6), 1407–1466 (2017)

Olver, P.J.: Classical Invariant Theory. London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)

Popov, V.L.: Stability of the action of an algebraic group on an algebraic variety. Izv. Akad. Nauk SSSR Ser. Mat. 36, 371–385 (1972)

Procesi, C.: Invariant Theory. Monografías del Instituto de Matemática y Ciencias Afines, vol. 2. Instituto de Matemática y Ciencias Afines, IMCA, Lima (1998)

Rökaeus, K.: Computer search for curves with many points among abelian covers of genus 2 curves. In: Aubry, Y., Ritzenthaler, C., Zykin, A. (eds.) Arithmetic, Geometry, Cryptography and Coding Theory. Contemporary Mathematics, vol. 574, pp. 145–150. American Mathematical Society, Providence (2012)

Salmon, G.: A treatise on the higher plane curves: intended as a sequel to “A treatise on conic sections”, 3rd edn. Chelsea, New York (1960)

Shioda, T.: On the graded ring of invariants of binary octavics. Am. J. Math. 89(4), 1022–1046 (1967)

Springer, T.A.: Invariant Theory. Lecture Notes in Mathematics, vol. 585. Springer, Berlin (1977)

Stoll, M.: Reduction theory of point clusters in projective space. Groups Geom. Dyn. 5(2), 553–565 (2011)

Sturmfels, B.: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation, 2nd edn. Springer, Vienna (2008)

van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE, A Package for Lie Group Computations. Computer Algebra Nederland, Amsterdam (1997)

van Rijnswou, S.M.: Testing the Equivalence of Planar Curves. PhD thesis, Technische Universiteit Eindhoven, Eindhoven (2001). https://research.tue.nl/en/publications/testing-the-equivalence-of-planar-curves

Weil, A.: The field of definition of a variety. Am. J. Math. 78, 509–524 (1956)