Reconstructing Plane Quartics from Their Invariants
Tóm tắt
Từ khóa
Tài liệu tham khảo
Artebani, M., Quispe, S.: Fields of moduli and fields of definition of odd signature curves. Arch. Math. (Basel) 99(4), 333–344 (2012)
Basson, R.: Arithmétique des espaces de modules des courbes hyperelliptiques de genre $$3$$ 3 en caractéristique positive. PhD thesis, Université de Rennes 1 (2015). https://tel.archives-ouvertes.fr/tel-01170922
Böhning, C.: The rationality of the moduli space of curves of genus 3 after P. Katsylo. In: Bogomolov, F., Tschinkel, Yu., (eds.) Cohomological and Geometric Approaches to Rationality Problems. Progress in Mathematics, vol. 282, pp. 17–53. Birkhäuser, Boston (2010)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)
Brouwer, A.E., Popoviciu, M.: The invariants of the binary decimic. J. Symb. Comput. 45(8), 837–843 (2010)
Brouwer, A.E., Popoviciu, M.: The invariants of the binary nonic. J. Symb. Comput. 45(6), 709–720 (2010)
Clebsch, A.: Theorie der binären algebraischen Formen. B.G. Teubner, Leipzig (1872)
Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton (2006)
Dolgachev, I.: Lectures on Invariant Theory. London Mathematical Society Lecture Note Series, 296th edn. Cambridge University Press, Cambridge (2003)
Elsenhans, A.-S.: Explicit computations of invariants of plane quartic curves. J. Symb. Comput. 68(2), 109–115 (2015)
Freiherr von Gall, A.: Das vollständige Formensystem einer binären Form achter Ordnung. Math. Ann. 17(1), 31–51, 139–152, 456 (1880)
Freiherr von Gall, A.: Das vollständige Formensystem der binären Form 7ter Ordnung. Math. Ann. 31(3), 318–336 (1888)
Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics, vol. 129. Springer, New York (1991)
Gatti, V., Viniberghi, E.: Spinors of $$13$$ 13 -dimensional space. Adv. Math. 30(2), 137–155 (1978)
Girard, M., Kohel, D.R.: Classification of genus 3 curves in special strata of the moduli space. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number Theory. Lecture Notes in Computer Science, vol. 4076, pp. 346–360. Springer, Berlin (2006)
Gordan, P.: Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist. J. Reine Angew. Math. 69, 323–354 (1868)
Hashimoto, M.: Equivariant total ring of fractions and factoriality of rings generated by semi-invariants. Commun. Algebra 43(4), 1524–1562 (2015)
Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge: Translated from the German and with a preface by Reinhard C. Laubenbacher, Edited and with an introduction by Bernd Sturmfels (1993)
Katsylo, P.I.: On the birational geometry of the space of ternary quartics. In: Vinberg, E.B. (ed.) Lie Groups, Their Discrete Subgroups, and Invariant Theory. Advances in Soviet Mathematics, vol. 8, pp. 95–103. American Mathematical Society, Providence (1992)
Katsylo, P.: Rationality of the moduli variety of curves of genus 3. Comment. Math. Helv. 71(4), 507–524 (1996)
Kılıçer, P., Labrande, H., Lercier, R., Ritzenthaler, C., Sijsling, J., Streng, M.: Plane quartics over $${\mathbb{Q}}$$ Q with complex multiplication. Acta Arith. 185(2), 127–156 (2018). arXiv:1701.06489
Kraft, H., Procesi, C.: Classical Invariant Theory. A Primer (1996). Notes available at https://www2.bc.edu/benjamin-howard/MATH8845/classical_invariant_theory.pdf
Lercier, R., Lorenzo García, E., Ritzenthaler, C.: Reduction type of non-hyperelliptic genus 3 curves (2018). arXiv:1803.05816
Lercier, R., Ritzenthaler, C.: Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects. J. Algebra 372, 595–636 (2012)
Lercier, R., Ritzenthaler, C., Sijsling, J.: Fast computation of isomorphisms of hyperelliptic curves and explicit Galois descent. In: Howe, E.W., Kedlaya, K.S. (eds.) Proceedings of the Tenth Algorithmic Number Theory Symposium, pp. 463–486. Mathematical Sciences Publishers, Berkeley (2012)
Lercier, R., Ritzenthaler, C., Rovetta, F., Sijsling, J.: Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields. LMS J. Comput. Math. 17(Suppl. A), 128–147 (2014)
Lercier, R., Ritzenthaler, C., Sijsling, J.: quartic $$_{-}$$ - reconstruction: a Magma package for reconstructing plane quartics from Dixmier–Ohno invariants. https://github.com/JRSijsling/quartic_reconstruction/ (2016)
Looijenga, E.: Invariants of quartic plane curves as automorphic forms. In: Keum, J., Kondō, S. (eds.) Algebraic Geometry. Contemporary Mathematics, vol. 422, pp. 107–120. American Mathematical Society, Providence (2007)
Mestre, J.-F.: Construction de courbes de genre $$2$$ 2 à partir de leurs modules. In: Mora, T., Traverso, C. (eds.) Effective Methods in Algebraic Geometry. Progress in Mathematics, vol. 94, pp. 313–334. Birkhäuser, Boston (1991)
Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, 3rd edn. Springer, Berlin (1994)
Olver, P.J.: Classical Invariant Theory. London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)
Popov, V.L.: Stability of the action of an algebraic group on an algebraic variety. Izv. Akad. Nauk SSSR Ser. Mat. 36, 371–385 (1972)
Procesi, C.: Invariant Theory. Monografías del Instituto de Matemática y Ciencias Afines, vol. 2. Instituto de Matemática y Ciencias Afines, IMCA, Lima (1998)
Rökaeus, K.: Computer search for curves with many points among abelian covers of genus 2 curves. In: Aubry, Y., Ritzenthaler, C., Zykin, A. (eds.) Arithmetic, Geometry, Cryptography and Coding Theory. Contemporary Mathematics, vol. 574, pp. 145–150. American Mathematical Society, Providence (2012)
Salmon, G.: A treatise on the higher plane curves: intended as a sequel to “A treatise on conic sections”, 3rd edn. Chelsea, New York (1960)
Shioda, T.: On the graded ring of invariants of binary octavics. Am. J. Math. 89(4), 1022–1046 (1967)
Stoll, M.: Reduction theory of point clusters in projective space. Groups Geom. Dyn. 5(2), 553–565 (2011)
Sturmfels, B.: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation, 2nd edn. Springer, Vienna (2008)
van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE, A Package for Lie Group Computations. Computer Algebra Nederland, Amsterdam (1997)
van Rijnswou, S.M.: Testing the Equivalence of Planar Curves. PhD thesis, Technische Universiteit Eindhoven, Eindhoven (2001). https://research.tue.nl/en/publications/testing-the-equivalence-of-planar-curves