Đối chiếu các mục tiêu mâu thuẫn: một phương pháp đổi mới dựa trên nghiên cứu hoạt động cho quản lý môi trường

Springer Science and Business Media LLC - Tập 25 - Trang 7423-7460 - 2022
Bisera Andrić Gušavac1, Selman Karagoz2,3, Milena Popović1, Dragan Pamućar4, Muhammet Deveci5
1Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia
2Faculty of Business and Law, School of Strategy and Leadership, Coventry University, Coventry, UK
3Nottingham Business School, Nottingham Trent University, Nottingham, UK
4Department of Logistics, Military academy, University of Defence, Belgrade, Serbia
5Department of Industrial Engineering, Turkish Naval Academy, National Defense University, Tuzla, Turkey

Tóm tắt

Các yếu tố của chuỗi cung ứng và chuỗi môi trường được xác định và kết nối thông qua quá trình nghiên cứu hoạt động. Một khung làm việc được phát triển để bao gồm các chuỗi này vào một quy trình xử lý các vấn đề nghiên cứu hoạt động trong hai lĩnh vực phức tạp khác nhau: kinh tế (chuỗi cung ứng) và hệ thống tự nhiên (môi trường), nhấn mạnh ảnh hưởng của giải pháp đối với cả hai hệ thống và hiệu suất của chúng. Khung làm việc giúp các nhà nghiên cứu có cái nhìn sâu sắc hơn về các vấn đề khi xem xét cả khía cạnh môi trường và công nghiệp. Nghiên cứu đề xuất một mối quan hệ nguyên nhân giữa chuỗi cung ứng và chuỗi môi trường và bắt đầu tạo cầu nối giữa hai chuỗi này bằng cách sử dụng các phương pháp và kỹ thuật nghiên cứu hoạt động. Trong bối cảnh này, một mô hình xác suất dựa trên kịch bản nhiều giai đoạn được phát triển. Để xử lý các bất định và điều tra các sự đánh đổi giữa các hàm mục tiêu, một phương pháp đa mục tiêu mờ tương tác được thực hiện. Trong phần nghiên cứu tình huống, việc điều hòa các mục tiêu mâu thuẫn trong một trường hợp quản lý chất thải được đặt ra và các khuyến nghị trong tương lai được làm nổi bật.

Từ khóa

#chuỗi cung ứng #chuỗi môi trường #nghiên cứu hoạt động #mô hình xác suất #quản lý chất thải #phương pháp đa mục tiêu

Tài liệu tham khảo

Abdallah, M., Arab, M., Shabib, A., El-Sherbiny, R., & El-Sheltawy, S. (2020). Characterization and sustainable management strategies of municipal solid waste in Egypt. Clean Technologies and Environmental Policy, 22(6), 1371–1383. https://doi.org/10.1007/s10098-020-01877-0 Abou Najm, M., & El-Fadel, M. (2004). Computer-based interface for an integrated solid waste management optimization model. Environmental Modelling & Software, 19(12), 1151–1164. https://doi.org/10.1016/j.envsoft.2003.12.005 Agrell, P. J., Stam, A., & Fischer, G. W. (2004). Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya. European Journal of Operational Research, 1581, 194–217. https://doi.org/10.1016/S0377-2217(03)00355-2 Ahi, P., & Searcy, C. (2013). A comparative literature analysis of definitions for green and sustainable supply chain management. Journal of Cleaner Production, 52, 329–341. https://doi.org/10.1016/j.jclepro.2013.02.018 Ahi, P., & Searcy, C. (2015). An analysis of metrics used to measure performance in green and sustainable supply chains. Journal of Cleaner Production, 86, 360–377. https://doi.org/10.1016/j.jclepro.2014.08.005 Alford, C., Brazil, M., & Lee, D. H. (2007). Optimisation in underground mining. In J. P. Miranda (Ed.), Handbook of operations research in natural resources (pp. 561–577). Boston: Springer. https://doi.org/10.1007/978-0-387-71815-6_30 Ali, Z., Mahmood, T., Ullah, K., & Khan, Q. (2021). Einstein geometric aggregation operators using a novel complex interval-valued pythagorean fuzzy setting with application in green supplier chain management. Reports in Mechanical Engineering, 2(1), 105–134. https://doi.org/10.31181/rme2001020105t Andalaft, N., Andalaft, P., Guignard, M., Magendzo, A., Wainer, A., & Weintraub, A. (2003). A problem of forest harvesting and road building solved through model strengthening and Lagrangean relaxation. Operations Research, 514, 613–628. https://doi.org/10.1287/opre.51.4.613.16107 Andrić-Gušavac, B., Stanojević, M., & Čangalović, M. (2019). Optimal treatment of agricultural land–special multi-depot vehicle routing problem. Agricultural Economics, 65, 569–578. https://doi.org/10.17221/134/2019-AGRICECON Andrić-Gušavac, B., Stojanović, D., & Sokolović, Ž. (2014). Application of some locational models in natural resources industry-agriculture case. In XIII International symposium of organizational sciences new business models and sustainable competitiveness SymOrg 2014. FON, Zlatibor, Serbia (pp. 1241–1248). ISBN: 978-86-7680-295-1. Anghinolfi, D., Paolucci, M., Robba, M., & Taramasso, A. C. (2013). A dynamic optimization model for solid waste recycling. Waste Management, 33(2), 287–296. https://doi.org/10.1016/j.wasman.2012.10.006 Apaydin, O., & Gonullu, M. T. (2008). Emission control with route optimization in solid waste collection process: A case study. Sadhana, 33(2), 71–82. https://doi.org/10.1007/s12046-008-0007-4 Armitage, D. (1995). An integrative methodological framework for sustainable environmental planning and management. Environmental Management, 194, 469. https://doi.org/10.1007/BF02471961 Aronsson, H., & Brodin, H. M. (2006). The environmental impact of changing logistics structures. The International Journal of Logistics Management, 173, 394–415. https://doi.org/10.1108/09574090610717545 Babaee Tirkolaee, E., Mahdavi, I., Seyyed Esfahani, M. M., & Weber, G. W. (2020). A hybrid augmented ant colony optimization for the multi-trip capacitated arc routing problem under fuzzy demands for urban solid waste management. Waste Management & Research, 38(2), 156–172. https://doi.org/10.1177/0734242X19865782 Badran, M. F., & El-Haggar, S. M. (2006). Optimization of municipal solid waste management in Port Said-Egypt. Waste Management, 26(5), 534–545. https://doi.org/10.1016/j.wasman.2005.05.005 Barreto, L. S. S., Ghisi, E., Godoi, C., & Oliveira, F. J. S. (2020). Reuse of ornamental rock solid waste for stabilization and solidification of galvanic solid waste: Optimization for sustainable waste management strategy. Journal of Cleaner Production, 275, 122996. https://doi.org/10.1016/j.jclepro.2020.122996 Barrow, C. (2006). Environmental management for sustainable development. Routledge, Taylor & Francis Group. https://doi.org/10.4324/9780203016671 Batur, M. E., Cihan, A., Korucu, M. K., Bektaş, N., & Keskinler, B. (2020). A mixed integer linear programming model for long-term planning of municipal solid waste management systems: Against restricted mass balances. Waste Management, 105, 211–222. https://doi.org/10.1016/j.wasman.2020.02.003 Björklund, M., Martinsen, U., & Abrahamsson, M. (2012). Performance measurements in the greening of supply chains. Supply Chain Management: An International Journal, 171, 29–39. https://doi.org/10.1108/13598541211212186 Bjørndal, T., Herrero, I., Newman, A., Romero, C., & Weintraub, A. (2012). Operations research in the natural resource industry. International Transactions in Operational Research, 191(2), 39–62. https://doi.org/10.1111/j.1475-3995.2010.00800.x Björndal, T., Lane, D. E., & Weintraub, A. (2004). Operational research models and the management of fisheries and aquaculture: A review. European Journal of Operational Research, 1563, 533–540. https://doi.org/10.1016/S0377-2217(03)00107-3 Bloemhof-Ruwaard, J. M., Van Beek, P., Hordijk, L., & Van Wassenhove, L. N. (1995). Interactions between operational research and environmental management. European Journal of Operational Research, 852, 229–243. https://doi.org/10.1016/0377-2217(94)00294-M Burger, M. J. (2008). Towards a framework for the elicitation of dilemmas. Quality and Quantity, 424, 541. https://doi.org/10.1007/s11135-006-9061-3 Caccetta, L. (2007). Application of optimisation techniques in open pit mining. In J. P. Miranda (Ed.), Handbook of operations research in natural resources (pp. 547–559). Boston: Springer. https://doi.org/10.1007/978-0-387-71815-6_29 Caccia, C. (1986). WCED public hearing. Member of Parliament, House of Commons Ottawa. Castrodeza, C., Lara, P., & Peña, T. (2005). Multicriteria fractional model for feed formulation: Economic, nutritional and environmental criteria. Agricultural Systems, 861, 76–96. Cetindamar, D. (2001). The role of regulations in the diffusion of environment technologies: Micro and macro issues. European Journal of Innovation Management. https://doi.org/10.1108/14601060110408099 Church, R. L. (2007). Tactical-level forest management models. In J. P. Miranda (Ed.), Handbook of operations research in natural resources (pp. 343–363). Springer. Cole, A. G. (2007). Expanding the field: Revisiting environmental education principles through multidisciplinary frameworks. The Journal of Environmental Education, 382, 35–45. https://doi.org/10.3200/JOEE.38.1.35-46 Conrad, J. M., Gomes, C. P., van Hoeve, W. J., Sabharwal, A., & Suter, J. F. (2012). Wildlife corridors as a connected subgraph problem. Journal of Environmental Economics and Management, 631(1), 18. https://doi.org/10.1016/j.jeem.2011.08.001 Daniel, S. E., Diakoulaki, D. C., & Pappis, C. P. (1997). Operations research and environmental planning. European Journal of Operational Research, 1022, 248–263. https://doi.org/10.1016/S0377-2217(97)00107-0 Das, S., & Bhattacharyya, B. K. (2015). Optimization of municipal solid waste collection and transportation routes. Waste Management, 43, 9–18. https://doi.org/10.1016/j.wasman.2015.06.033 Eiselt, H. A., & Marianov, V. (2014). A bi-objective model for the location of landfills for municipal solid waste. European Journal of Operational Research, 235(1), 187–194. https://doi.org/10.1016/j.ejor.2013.10.005 Epstein, R., Karlsson, J., Rönnqvist, M., & Weintraub, A. (2007). Harvest operational models in forestry. In J. P. Miranda (Ed.), Handbook of operations research in natural resources (pp. 365–377). Boston: Springer. https://doi.org/10.1007/978-0-387-71815-6_18 European Commission-DG Environment (2012). Analysis of selected concepts on resource management, A study to support the development of a thematic community strategy on the sustainable use of resources. Retrieved February 24, 2017, from http://ec.europa.eu/environment/natres/pdf/cowlstudy.pdf Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., & Helkowski, J. H. (2005). Global consequences of land use. Science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772 Fourer, R., Gay, D., & Kernighan, B. W. (2003). The AMPL book. Scientific Press Series. Golden, B. L., & Wasil, E. A. (1994). Managing fish, forests, wildlife, and water: Applications of management science and operations research to natural resource decision problems. Handbooks in Operations Research and Management Science, 6, 289–363. https://doi.org/10.1016/S0927-0507(05)80090-8 Governorship of Istanbul (2020). Districts of Istanbul 2020 (in Turkish). Retrieved March 17, 2021, from http://www.istanbul.gov.tr/ilcelerimiz Gunn, E. A. (2007). Models for strategic forest management. In J. P. Miranda (Ed.), Handbook of operations research in natural resources (pp. 317–341). Boston: Springer. https://doi.org/10.1007/978-0-387-71815-6_16 Hameed, I. A., Bochtis, D., & Sørensen, C. A. (2013). An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas. International Journal of Advanced Robotic Systems, 105, 231. https://doi.org/10.5772/56248 Hayashi, K. (2000). Multicriteria analysis for agricultural resource management: A critical survey and future perspectives. European Journal of Operational Research, 1222, 486–500. https://doi.org/10.1016/S0377-2217(99)00249-0 Heinonen, T., Pukkala, T., Ikonen, V. P., Peltola, H., Venäläinen, A., & Dupont, S. (2009). Integrating the risk of wind damage into forest planning. Forest Ecology and Management, 2587, 1567–1577. https://doi.org/10.1016/j.foreco.2009.07.006 Herrero, I., & Pascoe, S. (2003). Value versus volume in the catch of the Spanish South Atlantic trawl fishery. Journal of Agricultural Economics, 542, 325–341. https://doi.org/10.1111/j.1477-9552.2003.tb00066.x Hervani, A. A., Helms, M. M., & Sarkis, J. (2005). Performance measurement for green supply chain management. Benchmarking: an International Journal, 124, 330–353. https://doi.org/10.1108/14635770510609015 Hillier, F. S. (2012). Introduction to operations research. McGraw-Hill Education Pvt Limited. Hossu, C. A., Ioja, I. C., Susskind, L. E., Badiu, D. L., & Hersperger, A. M. (2018). Factors driving collaboration in natural resource conflict management: Evidence from Romania. Ambio. https://doi.org/10.1007/s13280-018-1016-0 ISTAC (2019). Activity report, 2019 (in Turkish). Retrieved March 17, 2021, from https://istac.istanbul/contents/11/raporlar_132366988732183525.pdf Karagoz, S., Aydin, N., & Isikli, E. (2017). Decision making in solid waste management under fuzzy environment. In Intelligence systems in environmental management: Theory and applications (pp. 91–115). Springer. https://doi.org/10.1007/978-3-319-42993-9_5 Könnyű, N., & Tóth, S. F. (2013). A cutting plane method for solving harvest scheduling models with area restrictions. European Journal of Operational Research, 2281, 236–248. https://doi.org/10.1016/j.ejor.2013.01.020 Krčevinac, S., Čangalović, M., Kovačević-Vujčić, V., Martić, M., & Vujošević, M. (2013). Operations research 1. Belgrade: Faculty of Organizational Sciences. in Serbian. Kushwaha, D. K., Panchal, D., & Sachdeva, A. (2020). Risk analysis of cutting system under intuitionistic fuzzy environment. Reports in Mechanical Engineering, 1(1), 162–173. https://doi.org/10.31181/rme200101162k Levis, J. W., Barlaz, M. A., DeCarolis, J. F., & Ranjithan, S. R. (2014). Systematic exploration of efficient strategies to manage solid waste in US municipalities: Perspectives from the solid waste optimization life-cycle framework (SWOLF). Environmental Science & Technology, 48(7), 3625–3631. https://doi.org/10.1021/es500052h Liang, T. F., & Cheng, H. W. (2009). Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains. Expert Systems with Applications, 36(2), 3367–3377. https://doi.org/10.1016/j.eswa.2008.01.002 Lujala, P. (2003). Classification of natural resources. In Trabajoelaborado para el ECPR Joint Session of Workshop. Edimburgo, ReinoUnido. Makhorin, A. (2005). GNU Linear Programming Kit, Modeling Language GNU Math Prog., draft version. Moscow: Department for Applied Informatics, Moscow Aviation Institute. Marchamalo, M., & Romero, C. (2007). Participatory decision-making in land use planning: An application in Costa Rica. Ecological Economics, 634, 740–748. https://doi.org/10.1016/j.ecolecon.2007.01.006 McDill, M. E., Rebain, S. A., & Braze, J. (2002). Harvest scheduling with area-based adjacency constraints. Forest Science, 484, 631–642. https://doi.org/10.1093/forestscience/48.4.631 Meadows, D. H., Meadows, D. L., & Randers, J. (1992). Beyond the limits: Global collapse or a sustainable future. Earthscan Publications Ltd. Meadows, D. H., Meadows, D. H., Randers, J., & Behrens, W. W., III. (1972). The limits to growth: A report to the club of Rome. Universe Books. https://doi.org/10.12987/9780300188479-012 Midgley, G., Johnson, M. P., & Chichirau, G. (2018). What is community operational research? European Journal of Operational Research, 268(3), 771–783. https://doi.org/10.1016/j.ejor.2017.08.014 Minciardi, R., Paolucci, M., Robba, M., & Sacile, R. (2008). Multi-objective optimization of solid waste flows: Environmentally sustainable strategies for municipalities. Waste Management, 28(11), 2202–2212. https://doi.org/10.1016/j.wasman.2007.10.003 Miranda, J. P. (2007). Handbook of operations research in natural resources (Vol. 99). Springer. Municipality of Istanbul (2020b). Recycling facilities (in Turkish). Retrieved March 14, 2021, from https://atikyonetimi.ibb.istanbul/hizmetlerimiz/kompost-ce-geri-kazanim-tesisi/ Municipality of Istanbul (2020a). Amount of waste by district, year and type of waste until September 2019 (in Turkish). Retrieved March 17, 2021, from http://data.ibb.gov.tr/dataset/ilce-yil-ve-atik-turu-bazinda-atik-miktar Murfield, M. L., & Tate, W. L. (2017). Buyer and supplier perspectives on environmental initiatives: Potential implications for supply chain relationships. The International Journal of Logistics Management, 284, 1319–1350. https://doi.org/10.1108/IJLM-06-2016-0138 Newman, A. M., Rubio, E., Caro, R., Weintraub, A., & Eurek, K. (2010). A review of operations research in mine planning. Interfaces, 403, 222–245. https://doi.org/10.1287/inte.1090.0492 Pacini, C., Giesen, G., Wossink, A., Omodei-Zorini, L., & Huirne, R. (2004). The EU’s Agenda 2000 reform and the sustainability of organic farming in Tuscany: Ecological-economic modelling at field and farm level. Agricultural Systems, 802, 171–197. https://doi.org/10.1016/j.agsy.2003.07.002 Paksoy, T., Pehlivan, N. Y., & Ozceylan, E. (2013). BulanıkKümeTeorisi (in Turkish). Nobel, 180–194. Pascoe, S., Coglan, L., & Mardle, S. (2001). Physical versus harvest-based measures of capacity: The case of the United Kingdom vessel capacity unit system. ICES Journal of Marine Science, 586, 1243–1252. https://doi.org/10.1006/jmsc.2001.1093 Peña, T., Castrodeza, C., & Lara, P. (2007). Environmental criteria in pig diet formulation with multi-objective fractional programming. In J. P. Miranda (Ed.), Handbook of operations research in natural resources (pp. 53–68). Springer. https://doi.org/10.1007/978-0-387-71815-6_4 Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 3446187, 1246752. https://doi.org/10.1126/science.1246752 Rajgopal, J. (2004). Principles and applications of operations research. In K. B. Zandin (Ed.), Maynard’s industrial engineering handbook (5th ed., p. 11.27-11.44). McGraw Hill. Ramazan, S. (2007). The new fundamental tree algorithm for production scheduling of open pit mines. European Journal of Operational Research, 1772, 1153–1166. https://doi.org/10.1016/j.ejor.2005.12.035 Rathi, S. (2007). Optimization model for integrated municipal solid waste management in Mumbai. India. Environment and Development Economics, 12(1), 105–121. https://doi.org/10.1017/S1355770X0600341X REC, Turkey (2018). SayılarlaTürkiyeveAvrupa’daAtıkYönetimi (in Turkish). Retrieved March 14, 2021, from https://sifiratik.gov.tr/content/files/uploads/9/EK9,%20Say%C4%B1n,%20R%C4%B1fat%20%C3%9Cnal%20SAYMAN,%20B%C3%B6lgesel%20%C3%87evre%20Merkezi%20(REC)%20Direkt%C3%B6r%C3%BC.pptx Romero, C. (2000). Risk programming for agricultural resource allocation: A multidimensional risk approach. Annals of Operations Research, 941(4), 57–68. https://doi.org/10.1023/A:1018985620677 Romero, C., & Rehman, T. (2003). Multiple criteria analysis for agricultural decisions (Vol. 11). Elsevier. Sakawa, M., & Nishizaki, I. (2002). Interactive fuzzy programming for decentralized two-level linear programming problems. Fuzzy Sets and Systems, 125(3), 301–315. https://doi.org/10.1016/S0165-0114(01)00042-2 Salzman, J., Thompson, B. H., Jr., & Daily, G. C. (2001). Protecting ecosystem services: Science, economics, and law. Stan. Envtl. LJ, 20, 309. Scherr, S. J., & McNeely, J. A. (2008). Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ‘ecoagriculture’ landscapes. Philosophical Transactions of the Royal Society of London b: Biological Sciences, 3631491, 477–494. https://doi.org/10.1098/rstb.2007.2165 Schneider, D. I. (2013). An introduction to programming using visual basic 2012 (9th ed.). Prentice Hall Press. Scholz, R. W., Flückiger, B., Schwarzenbach, R. C., Stauffacher, M., Mieg, H., & Neuenschwander, M. (1997). Environmental problem-solving ability: Profiles in application documents of research assistants. The Journal of Environmental Education, 284, 37–44. https://doi.org/10.1080/00958964.1997.9942834 Sørensen, C. G., & Bochtis, D. D. (2010). Conceptual model of fleet management in agriculture. Biosystems Engineering, 1051, 41–50. https://doi.org/10.1016/j.biosystemseng.2009.09.009 Tóth S. F. (2015). Optimization techniques for natural resources. Retrieved March 3, 2017, from http://faculty.washington.edu/toths/Presentations/LectureNotesPage.htm Tóth, S. F., Haight, R. G., & Rogers, L. W. (2011). Dynamic reserve selection: Optimal land retention with land-price feedbacks. Operations Research, 595, 1059–1078. https://doi.org/10.1287/opre.1110.0961 Turkish Statistical Institute (TSI). (2018). Amount of municipal waste by disposal and recovery methods, 2018 (in Turkish). Retrieved March 14, 2021, from https://tuikweb.tuik.gov.tr/PreHaberBultenleri.do?id=30666 Turkish Statistical Institute (TSI). (2020). The population of province/district centres and towns/villages and annual population growth rate by province, 2019, 2020 (in Turkish). Retrieved March 14, 2021, from https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2020-37210 Weintraub, A., & Romero, C. (2006). Operations research models and the management of agricultural and forestry resources: A review and comparison. Interfaces, 365, 446–457. https://doi.org/10.1287/inte.1060.0222 West, S. E. (2015). Evaluation, or just data collection? An exploration of the evaluation practice of selected UK environmental educators. The Journal of Environmental Education, 461, 41–55. https://doi.org/10.1080/00958964.2014.973351 Winston, W. L., & Goldberg, J. B. (2004). Operations research: Applications and algorithms (Vol. 3). Thomson Brooks/Cole. Yin, R. K. (2018). Case study research and applications. Sage. Zadeh, L. A. (1965). Information and control. Fuzzy Sets, 8(3), 338–353. De Zeeuw, A. (2000). Resource management: Do we need public policy? Retrieved February 24, 2014, from http://ec.europa.eu/environment/enveco/waste/pdf/zeeuw.pdf Zekri, S., & Boughanmi, H. (2007). Modeling the interactions between agriculture and the environment. In J. P. Miranda (Ed.), Handbook of operations research in natural resources (pp. 69–91). Boston: Springer. https://doi.org/10.1007/978-0-387-71815-6_5 Zimmermann, H. J. (1975). Description and optimization of fuzzy systems. International Journal of General System, 2(1), 209–215. Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective