Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting
Tài liệu tham khảo
Ben Taieb, 2014, A gradient boosting approach to the kaggle load forecasting competition, International Journal of Forecasting, 30, 382, 10.1016/j.ijforecast.2013.07.005
Ben Taieb, 2017
Chen, 2016, XGBoost: A scalable tree boosting system, 785
Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2017). xgboost: Extreme gradient boosting. URL https://CRANR-project.org/package=xgboost, R package version 06-4.
Friedman, 2001, Greedy function approximation: A gradient boosting machine, The Annals of Statistics, 29, 1189, 10.1214/aos/1013203451
Friedman, 2000, Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors), The Annals of Statistics, 28, 337, 10.1214/aos/1016218223
Gneiting, 2011, Quantiles as optimal point forecasts, International Journal of Forecasting, 27, 197, 10.1016/j.ijforecast.2009.12.015
Hong, 2010
Hong, 2014, Global energy forecasting competition 2012, International Journal of Forecasting, 30, 357, 10.1016/j.ijforecast.2013.07.001
Hong, 2016, Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond, International Journal of Forecasting, 32, 896, 10.1016/j.ijforecast.2016.02.001
Hong, 2019, Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting, International Journal of Forecasting, 10.1016/j.ijforecast.2019.02.006
Hyndman, 2011, Optimal combination forecasts for hierarchical time series, Computational Statistics & Data Analysis, 55, 2579, 10.1016/j.csda.2011.03.006
Hyndman, 2010, Density forecasting for long-term peak electricity demand, IEEE Transactions on Power Systems, 25, 1142, 10.1109/TPWRS.2009.2036017
Hyndman, 2016, Fast computation of reconciled forecasts for hierarchical and grouped time series, Computational Statistics & Data Analysis, 97, 16, 10.1016/j.csda.2015.11.007
Koren, 2009, The BellKor solution to the Netflix grand prize
Kuhn, 2017
R Core Team (2017). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/.
Schapire, 1990, The strength of weak learnability, Machine Learning, 5, 197, 10.1007/BF00116037
Wickramasuriya, 2015
Xie, 2018, Temperature scenario generation for probabilistic load forecasting, IEEE Transactions on Smart Grid, 9, 1680
Ziel, 2016, Lasso estimation for GEFCom2014 probabilistic electric load forecasting, International Journal of Forecasting, 32, 1029, 10.1016/j.ijforecast.2016.01.001