Khuyến nghị cho nghiên cứu kiểu hình dựa trên hình ảnh cộng hưởng từ tim: Phần hình ảnh

Springer Science and Business Media LLC - Tập 1 - Trang 151-170 - 2021
Chengyan Wang1, Yan Li2, Jun Lv3, Jianhua Jin4, Xumei Hu1, Xutong Kuang1, Weibo Chen5, He Wang1,6,7
1Human Phenome Institute, Fudan University, Shanghai, China
2Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
3School of Computer and Control Engineering, Yantai University, Yantai, China
4School of Data Science, Fudan University, Shanghai, China
5Philips Healthcare. Co., Shanghai, China
6Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
7Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China

Tóm tắt

Hình ảnh cộng hưởng từ tim (CMR) cung cấp các dấu ấn sinh học quan trọng cho việc chẩn đoán sớm nhiều bệnh tim mạch và đã được báo cáo là tiết lộ các mối liên quan trên toàn bộ kiểu hình của cấu trúc và chức năng tim/aorta trong các nghiên cứu quần thể. Tuy nhiên, do tính phức tạp trong vận hành và sự biến đổi giữa các nhà sản xuất, sức mạnh trường từ, cuộn dây, chuỗi hình ảnh, thông số quét và phương pháp phân tích hình ảnh, CMR hiếm khi được sử dụng trong các nghiên cứu với quy mô lớn. Các hướng dẫn hiện có chủ yếu tập trung vào việc chẩn đoán bệnh tim mạch, không nhằm vào nghiên cứu cơ bản. Mục đích của nghiên cứu này là đề xuất một khuyến nghị cho các phép đo kiểu hình dựa trên CMR cho nghiên cứu quần thể. Chúng tôi phân loại các chuỗi hình ảnh của CMR thành ba loại dựa trên tầm quan trọng và tính phổ quát của các kiểu hình có thể đo được tương ứng. Thời gian thu thập và khả năng lặp lại của các phép đo kiểu hình cũng được xem xét trong quá trình phân loại. Khác với các hướng dẫn khác, khuyến nghị này tập trung vào việc đo lường định lượng một lượng lớn kiểu hình từ CMR.

Từ khóa

#Hình ảnh cộng hưởng từ tim #chẩn đoán bệnh tim mạch #nghiên cứu quần thể #kiểu hình #phương pháp đo lường định lượng

Tài liệu tham khảo

Akçakaya M, Weingärtner S, Basha TA et al (2016) Joint myocardial T1 and T2 mapping using a combination of saturation recovery and T2-preparation. Magn Reson Med 76(3):888–896. https://doi.org/10.1002/mrm.25975 American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging, Cerqueira MD, Weissman NJ et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542. https://doi.org/10.1161/hc0402.102 Bai W, Suzuki H, Huang J et al (2020) A population-based phenome-wide association study of cardiac and aortic structure and function. Nat Med 26(10):1654–1662. https://doi.org/10.1038/s41591-020-1009 Barker AJ, Roldán-Alzate A, Entezari P et al (2015) Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn Reson Med 73(5):1904–1913. https://doi.org/10.1002/mrm.25326 Biglands JD, Radjenovic A, Ridgway JP (2012) Cardiovascular magnetic resonance physics for clinicians: part II. J Cardiovasc Magn Reson 14(1):1–40. https://doi.org/10.1186/1532-429x-14-66 Bizino MB, Hammer S, Lamb HJ (2014) Metabolic imaging of the human heart: clinical application of magnetic resonance spectroscopy. Heart 100(11):881–890. https://doi.org/10.1136/heartjnl-2012-302546 Bock J, Frydrychowicz A, Lorenz R et al (2011) In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med 66(4):1079–1088. https://doi.org/10.1002/mrm.22907 Carlsson M, Töger J, Kanski M, Bloch KM, Ståhlberg F, Heiberg E, Arheden H (2011) Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson 13(1):55. https://doi.org/10.1186/1532-429X-13-55 Carlsson M, Heiberg E, Toger J et al (2012) Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol 302(4):H893–H900 Chow K, Flewitt JA, Green JD et al (2014) Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med 71(6):2082–2095. https://doi.org/10.1002/mrm.24878 Duffy BA, Zhao L, Sepehrband F, Min J et al (2021) Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. Neuroimage 230:117756. https://doi.org/10.1016/j.neuroimage.2021.117756 Dyverfeldt P, Bissell M, Barker AJ et al (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17(1):1–19. https://doi.org/10.1016/j.neuroimage.2021.117756 Ferreira VM, Schulz-Menger J, Holmvang G et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 72(24):3158–3176. https://doi.org/10.1016/j.jacc.2018.09.072 Finn JP, Nael K, Deshpande V et al (2006) Cardiac MR imaging: state of the technology. Radiology 241(2):338–354. https://doi.org/10.1148/radiol.2412041866 Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53(17):1475–1487. https://doi.org/10.1016/j.jacc.2009.02.007 Fushimi Y, Okada T, Yamamoto A et al (2012) Estimation of the timing of carotid artery flow using peripheral pulse wave-gated MRI. J Magn Reson Imaging 36(2):454–458. https://doi.org/10.1002/jmri.23665 Gong T, Tong Q, Li Z et al (2020) Deep learning-based method for reducing residual motion effects in diffusion parameter estimation. Magn Reson Med 85(4):2278–2293. https://doi.org/10.1002/mrm.28544 Guo R, Chen Z, Herzka DA et al (2019) A three-dimensional free-breathing sequence for simultaneous myocardial T1 and T2 mapping. Magn Reson Med 81(2):1031–1043. https://doi.org/10.1002/mrm.27466 Hamilton JI, Pahwa S, Adedigba J et al (2020) Simultaneous mapping of T1 and T2 using cardiac magnetic resonance fingerprinting in a cohort of healthy subjects at 1.5 T. J Magn Reson Imaging 52(4):1044–1052. https://doi.org/10.1002/jmri.27155 Henningsson M, Malik S, Botnar R, Castellanos D, Hussain T, Leiner T (2020) Black-Blood Contrast in Cardiovascular MRI. J Magn Reson Imaging 19:e27399. https://doi.org/10.1002/jmri.27399 Hollingsworth KG, Hodgson T, Macgowan GA et al (2012) Impaired cardiac function in chronic fatigue syndrome measured using magnetic resonance cardiac tagging. J Intern Med 271(3):264–270. https://doi.org/10.1111/j.1365-2796.2011.02429.x Hundley WG, Bluemke DA, Finn JP et al (2010) ACCF/ACR/AHA/NASCI/ SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55(23):2614–2662. https://doi.org/10.1016/j.jacc.2009.11.011 Ichikawa Y, Sakuma H, Kitagawa K et al (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5(2):333–342. https://doi.org/10.1081/jcmr-120019422 Jaffe AS, Babuin L, Apple FS (2006) Biomarkers in acute cardiac disease: the present and the future. J Am Coll Cardiol 48(1):1–11. https://doi.org/10.1016/j.jacc.2006.02.056 Jo Y, Kim JJ, Park CH et al (2019) Guideline for cardiovascular magnetic resonance imaging from the Korean Society of Cardiovascular Imaging—part 1: standardized protocol. Korean J Radiol 20(9):1313. https://doi.org/10.3348/kjr.2019.0398 Kelle S, Bucciarelli-Ducci C, Judd RM et al (2020) Society for Cardiovascular Magnetic Resonance (SCMR) recommended CMR protocols for scanning patients with active or convalescent phase COVID-19 infection. J Cardiovasc Magn Reson 22(1):1–4. https://doi.org/10.1186/s12968-020-00656-6 Kramer CM, Barkhausen J, Flamm SD et al (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10(1):1–10. https://doi.org/10.1186/1532-429x-10-35 Kramer CM, Barkhausen J, Flamm SD et al (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15(1):1–10. https://doi.org/10.1186/1532-429x-15-91 Kramer CM, Barkhausen J, Bucciarelli-Ducci C et al (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22(1):1–18. https://doi.org/10.1186/s12968-020-00607-1 Küstner T, Gatidis S, Liebgott A et al (2018) A machine-learning framework for automatic reference-free quality assessment in MRI. Magn Reson Imaging 53:134–147. https://doi.org/10.1016/j.mri.2018.07.003 Markl M, Frydrychowicz A, Kozerke S et al (2012) 4D flow MRI. J Magn Reson Imaging 36(5):1015–1036. https://doi.org/10.1002/jmri.23632 Markl M, Schnell S, Wu C et al (2016) Advanced flow MRI: emerging techniques and applications. Clin Radiol 71(8):779–795. https://doi.org/10.1016/j.crad.2016.01.011 Mekkaoui C, Porayette P, Jackowski MP, Kostis WJ, Dai G, Sanders S, Sosnovik DE (2013) Diffusion MRI tractography of the developing human fetal heart. PLoS ONE 8(8):e72795. https://doi.org/10.1371/journal.pone.0072795 Mekkaoui C, Reese TG, Jackowski MP et al (2017) Diffusion MRI in the heart. NMR Biomed 30(3):e3426. https://doi.org/10.1002/nbm.3426 Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146. https://doi.org/10.1002/mrm.20110 Messroghli DR, Moon JC, Ferreira VM et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19(1):1–24. https://doi.org/10.1186/s12968-017-0389-8 Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15(7):387–407. https://doi.org/10.1038/s41569-018-0007-y Nielles-Vallespin S, Mekkaoui C, Gatehouse P et al (2013) In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn Reson Med 70(2):454–465. https://doi.org/10.1002/mrm.24488 Pedersen H, Kozerke S, Ringgaard S et al (2009) k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 62(3):706–716. https://doi.org/10.1002/mrm.22052 Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD (2010) Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 12:69. https://doi.org/10.1186/1532-429x-12-69 Qi H, Bustin A, Cruz G et al (2019) Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution. Magn Reson Imaging 63:159–169. https://doi.org/10.1016/j.mri.2019.08.008 Salerno M, Janardhanan R, Jiji RS, Brooks J, Adenaw N, Mehta B, Yang Y, Antkowiak P, Kramer CM, Epstein FH (2013) Comparison of methods for determining the partition coefficient of gadolinium in the myocardium using T(1) mapping. J Magn Reson Imaging 38(1):217–224. https://doi.org/10.1002/jmri.23875 Samani ZR, Alappatt JA, Parker D et al (2020) QC-automator: deep learning-based automated quality control for diffusion MR images. Front Neurosci 22(13):1456. https://doi.org/10.3389/fnins.2019.01456 Schulz-Menger J, Bluemke DA, Bremerich J et al (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15(1):35. https://doi.org/10.1186/1532-429x-15-35 Sinha N, Saranathan M, Ramakrishnan AG (2010) Improved k-t BLAST for fast fMR imaging. J Magn Reson 204(2):273–280. https://doi.org/10.1016/j.jmr.2010.03.007 Sujit SJ, Coronado I, Kamali A et al (2019) Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. J Magn Reson Imaging 50(4):1260–1267. https://doi.org/10.1002/jmri.26693 Thunberg P, Kähäri A (2011) Visualization of through-plane blood flow measurements obtained from phase-contrast MRI. J Digit Imaging 24(3):470–477. https://doi.org/10.1007/s10278-010-9286-5 van der Meer RW, Lamb HJ, Smit JW et al (2012) MR imaging evaluation of cardiovascular risk in metabolic syndrome. Radiology 264:21–37. https://doi.org/10.1148/radiol.12110772 van Ewijk PA, Schrauwen-Hinderling VB, Bekkers SCAM et al (2015) MRS: a noninvasive window into cardiac metabolism. NMR Biomed 28(7):747–766. https://doi.org/10.1002/nbm.3320 Wang CY, Liang YC, Wu Y et al (2020) Correction of out-of-FOV motion artifacts using convolutional neural network derived prior image. Magn Reson Imaging 71:93–102. https://doi.org/10.1016/j.mri.2020.05.004 Wassmuth R, Schulz-Menger J (2011) Cardiovascular magnetic resonance imaging of myocardial inflammation. Expert Rev Cardiovasc Ther 9(9):1193–1201. https://doi.org/10.1586/erc.11.118 Weingärtner S, Akçakaya M, Basha T et al (2014) Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med 71(3):1024–1034. https://doi.org/10.1002/mrm.24761 Woodard PK, Bluemke DA, Cascade PN et al (2006) ACR practice guideline for the performance and interpretation of cardiac magnetic resonance imaging (MRI). J Am Coll Radiol 3(9):665–676. https://doi.org/10.1016/j.jacr.2006.06.007 Zerhouni EA, Parish DM, Rogers WJ et al (1988) Human heart: tagging with MR imaging—a method for noninvasive assessment of myocardial motion. Radiology 169(1):59–63. https://doi.org/10.1148/radiology.169.1.3420283