Nhận diện cảm xúc trong cơ thể: Kích thích dây thần kinh phế vị tăng cường nhận diện cơn giận trong khi làm suy giảm cảm giác buồn
Tóm tắt
Theo lý thuyết Polyvagal, dây thần kinh phế vị là cơ sở phát sinh chủ yếu hỗ trợ việc nhận diện cảm xúc hiệu quả nhằm thúc đẩy an toàn và sinh tồn. Các nghiên cứu trước đây cho thấy dây thần kinh phế vị ảnh hưởng đến khả năng của con người trong việc nhận diện cảm xúc dựa trên các khu vực mắt và hình ảnh toàn bộ khuôn mặt, nhưng không phải hình thể tĩnh. Mục tiêu của nghiên cứu này là xác minh xem mối liên hệ nguyên nhân đã được gợi ý giữa hoạt động của dây phế vị và nhận diện cảm xúc có thể được tổng quát hóa cho các tình huống mà ở đó cảm xúc phải được suy luận từ hình ảnh của các cơ thể đang chuyển động. Chúng tôi đã sử dụng kích thích dây thần kinh phế vị qua da (tVNS), một kỹ thuật kích thích não không xâm lấn nhằm kích thích dây thần kinh phế vị bằng cách sử dụng một dòng điện nhẹ cho nhánh tai của dây phế vị, nằm ở phần nhô ra phía trước của tai ngoài. Trong hai phiên, các tham gia viên nhận kích thích tVNS chủ động hoặc giả mạo trước và trong khi thực hiện ba tác vụ nhận diện cảm xúc, nhằm chỉ số khả năng của họ trong việc nhận diện cảm xúc từ các biểu cảm cơ thể tĩnh hoặc chuyển động của diễn viên. Kích thích tVNS chủ động, so với kích thích giả mạo, đã cải thiện khả năng nhận diện cơn giận nhưng lại làm giảm khả năng nhận diện cảm giác buồn, bất kể loại kích thích (tĩnh so với chuyển động). Phù hợp với ý tưởng về sự tham gia phân cấp của dây phế vị trong việc thiết lập an toàn, như đã được lí thuyết Polyvagal đề xuất, chúng tôi lập luận rằng những phát hiện của chúng tôi có thể được giải thích bởi các chiến lược điều chỉnh khác nhau do kích thích dây phế vị đến các biểu cảm cảm xúc. Tóm lại, những phát hiện của chúng tôi phù hợp với góc nhìn tiến hóa về dây thần kinh phế vị và sự tham gia của nó trong việc nhận diện cảm xúc nhằm có lợi cho sự sống còn.
Từ khóa
Tài liệu tham khảo
Actis-Grosso, R., Bossi, F., & Ricciardelli, P. (2015). Emotion recognition through static faces and moving bodies: a comparison between typically developed adults and individuals with high level of autistic traits . Frontiers in Psychology . Retrieved from https://www.frontiersin.org/article/10.3389/fpsyg.2015.01570
Aronoff, J., Woike, B. A., & Hyman, L. M. (1992). Which are the stimuli in facial displays of anger and happiness? Configurational bases of emotion recognition. Journal of Personality and Social Psychology, 62(6), 1050–1066. https://doi.org/10.1037/0022-3514.62.6.1050
Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 717–746. https://doi.org/10.1068/p5096
Aviezer, H., Trope, Y., & Todorov, A. (2012). Body Cues, Not Facial Expressions, Discriminate Between Intense Positive and Negative Emotions. Science, 338(6111), 1225 LP – 1229. https://doi.org/10.1126/science.1224313
Baron-Cohen, S., & Wheelwright, S. (2004). The Empathy Quotient: An Investigation of Adults with Asperger Syndrome or High Functioning Autism, and Normal Sex Differences. Journal of Autism and Developmental Disorders, 34(2), 163–175.
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The Autism-Spectrum Quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders. US: Plenum Publishing Corp. https://doi.org/10.1023/A:1005653411471
Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13(2), 183–214. https://doi.org/10.1017/S0954579401002012
Berntson, G., Thomas Bigger, J., L. Eckberg, D., Grossman, P., Kaufmann, P., Malik, M., … van der Molen, M. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
Beste, C., Steenbergen, L., Sellaro, R., Grigoriadou, S., Zhang, R., Chmielewski, W., … Colzato, L. (2016). Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control – A Study Using Transcutaneous Vagus Nerve Stimulation. Brain Stimulation, 9(6), 811–818. https://doi.org/10.1016/j.brs.2016.07.004
Braddick, O. (1992). Motion may be seen but not used. Current Biology: Visual Perception, 2(11), 597–599.
Brownlow, S., Dixon, A. R., Egbert, C. A., & Radcliffe, R. D. (1997). Perception of movement and dancer characteristics from point-light displays of dance. The Psychological Record, 47(3), 411–421.
Butler, E., Wilhelm, F., & Gross, J. (2006). Respiratory sinus arrhythmia, emotion, and emotion regulation during social interaction. Psychophysiology, 43(6), 612–622.
Calvo, M. G., & Lundqvist, D. (2008). Facial expressions of emotion (KDEF): Identification under different display-duration conditions. Behavior Research Methods, 40(1), 109–115. https://doi.org/10.3758/BRM.40.1.109
Carreno, F. R., & Frazer, A. (2017). Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics, 14(3), 716-727.
Colzato, Lorenza S., Fagioli, S., Erasmus, V., & Hommel, B. (2005). Caffeine, but not nicotine, enhances visual feature binding. European Journal of Neuroscience, 21(2), 591–595. https://doi.org/10.1111/j.1460-9568.2005.03868.x
Colzato, Lorenza S., Kool, W., & Hommel, B. (2008). Stress modulation of visuomotor binding. Neuropsychologia, 46(5), 1542–1548. https://doi.org/10.1016/j.neuropsychologia.2008.01.006
Colzato, Lorenza S., Sellaro, R., & Beste, C. (2017). Darwin revisited: The vagus nerve is a causal element in controlling recognition of other’s emotions. Cortex, 92, 95–102. https://doi.org/10.1016/j.cortex.2017.03.017
Colzato, Lorenza S., & Steenbergen, L. (2017). High vagally mediated resting-state heart rate variability is associated with superior action cascading. Neuropsychologia, 106, 1–6. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2017.08.030
Damasio, A. R., Everitt, B. J., Bishop, D., & Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 1413–1420. https://doi.org/10.1098/rstb.1996.0125
Damasio, A. R., Tranel, D., & Damasio, H. C. (1991). Somatic markers and the guidance of behavior: Theory and preliminary testing. In Frontal lobe function and dysfunction. (pp. 217–229). Oxford University Press.
Davis, M. H. (1980). A Multidimensional Approach to Individual Differences in Empathy Mark. Catalog of Selected Documents in Psychology, 10, 85. https://doi.org/10.1037/0022-3514.44.1.113
Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113–126. https://doi.org/10.1037/0022-3514.44.1.113
De Gelder, B. (2006). Towards the neurobiology of emotional body language. Nature Reviews Neuroscience, 7(3), 242–249. https://doi.org/10.1038/nrn1872
de Gelder, B., & Van den Stock, J. (2011). The Bodily Expressive Action Stimulus Test (BEAST). Construction and Validation of a Stimulus Basis for Measuring Perception of Whole Body Expression of Emotions. Frontiers in Psychology, 2, 181. https://doi.org/10.3389/fpsyg.2011.00181
de Meijer, M. (1989). The contribution of general features of body movement to the attribution of emotions. Journal of Nonverbal Behavior, 13(4), 247–268. https://doi.org/10.1007/BF00990296
Denver, J. W., Reed, S. F., & Porges, S. W. (2007). Methodological issues in the quantification of respiratory sinus arrhythmia. Biological Psychology, 74(2), 286–294. https://doi.org/10.1016/j.biopsycho.2005.09.005
Dittrich, W. H., Troscianko, T., Lea, S. E. G., & Morgan, D. (1996). Perception of Emotion from Dynamic Point-Light Displays Represented in Dance. Perception, 25(6), 727–738. https://doi.org/10.1068/p250727
Domes, G., Heinrichs, M., Michel, A., Berger, C., & Herpertz, S. C. (2007). Oxytocin Improves “Mind-Reading” in Humans. Biological Psychiatry. Domes, Gregor: Department of Psychiatry and Psychotherapy, Rostock University, Gehlsheimer Strasse 20, Rostock, Germany, 18147, [email protected]: Elsevier Science. https://doi.org/10.1016/j.biopsych.2006.07.015
Eisenberg, N., Fabes, R., & Guthrie, I. (1997). Coping with stress. The roles of regulation and development. In S. Wolchik & I. Sandler (Eds.), Handbook of children’s coping: Linking theory and intervention. (pp. 41–70.). New York: Plenum.
Ekman, P. (1972). Universals and Cultural Differences in Facial Expressions of Emotion. In J. Cole (Ed.), Nebraska Symposium on Motivation (pp. 207–282). University of Nebraska Press.
Ekman, P., & Friesen, W. V. (1978). Facial action coding system: a technique for the measurement of facial movement. (C. P. P. P. Press, Ed.). Palo Alto.
Elger, G., Hoppe, C., Falkai, P., Rush, A. J., & Elger, C. E. (2000). Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Research, 42(2-3), 203-210.
Feldman Barrett, L., Mesquita, B., & Gendron, M. (2011). Context in Emotion Perception. Current Directions in Psychological Science, 20(5), 286–290. https://doi.org/10.1177/0963721411422522
Fischer, A. H., & Manstead, A. S. R. (2008). Social functions of emotion. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of emotions (p. 456–468). The Guilford Press.
Frijda, N. H., & Mesquita, B. (2004). The social roles and functions of emotions. Emotion and Culture: Empirical Studies of Mutual Influence., 51–87. https://doi.org/10.1037/10152-002
Frith, C. (2009). Role of facial expressions in social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3453–3458. https://doi.org/10.1098/rstb.2009.0142
Garratt, G., Ingram, R. E., Rand, K. L., & Sawalani, G. (2007). Cognitive Processes in Cognitive Therapy: Evaluation of the Mechanisms of Change in the Treatment of Depression. Clinical Psychology: Science and Practice, 14, 224–239. https://doi.org/10.1111/j.1468-2850.2007.00081.x
Hassert, D. L., Miyashita, T., & Williams, C. L. (2004). The Effects of Peripheral Vagal Nerve Stimulation at a Memory-Modulating Intensity on Norepinephrine Output in the Basolateral Amygdala. Behavioral Neuroscience. Williams, C. L.: Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA, US, 22904-4400, [email protected]: American Psychological Association. https://doi.org/10.1037/0735-7044.118.1.79
Humphreys, G. W., Donnelly, N., & Riddoch, M. J. (1993). Expression is computed separately from facial identity, and it is computed separately for moving and static faces: Neuropsychological evidence. Neuropsychologia. Netherlands: Elsevier Science https://doi.org/10.1016/0028-3932(93)90045-2
Jin, Y., & Kong, J. (2017). Transcutaneous Vagus Nerve Stimulation: A Promising Method for Treatment of Autism Spectrum Disorders. Frontiers in Neuroscience, 10, 609. https://doi.org/10.3389/fnins.2016.00609
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211. https://doi.org/10.3758/BF03212378
Jongkees, B. J., Immink, M. A., Finisguerra, A., & Colzato, L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) Enhances response selection during sequential action. Frontiers in Psychology, 9(JUL), 1–8. https://doi.org/10.3389/fpsyg.2018.01159
Koenig, J., Parzer, P., Haigis, N., Liebemann, J., Jung, T., Resch, F., & Kaess, M. (2019). Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression. Psychological Medicine. https://doi.org/10.1017/S0033291719003490
Kogan, A., Oveis, C., Carr, E. W., Gruber, J., Mauss, I. B., Shallcross, A., … Keltner, D. (2014). Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality. Journal of Personality and Social Psychology. Kogan, Aleksandr: Department of Psychology, University of Cambridge, Downing Street, Cambridge, United Kingdom, CB2 3EB, [email protected]: American Psychological Association. https://doi.org/10.1037/a0037509
Kok, B. E., & Fredrickson, B. L. (2010). Upward spirals of the heart: autonomic flexibility, as indexed by vagal tone, reciprocally and prospectively predicts positive emotions and social connectedness. Biological Psychology, 85(3), 432–436. https://doi.org/10.1016/j.biopsycho.2010.09.005
Kong, J., Fang, J., Park, J., Li, S., & Rong, P. (2018). Treating Depression with Transcutaneous Auricular Vagus Nerve Stimulation: State of the Art and Future Perspectives. Frontiers in Psychiatry, 9, 20. https://doi.org/10.3389/fpsyt.2018.00020
Kraus, T., Hösl, K., Kiess, O., Schanze, A., Kornhuber, J., & Forster, C. (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. Journal of Neural Transmission, 114(11), 1485–1493. https://doi.org/10.1007/s00702-007-0755-z
Kret, M. E., & de Gelder, B. (2013). When a smile becomes a fist: the perception of facial and bodily expressions of emotion in violent offenders. Experimental Brain Research, 228(4), 399–410. https://doi.org/10.1007/s00221-013-3557-6
Kreuzer, P. M., Landgrebe, M., Husser, O., Resch, M., Schecklmann, M., Geisreiter, F., … Langguth, B. (2012). Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Frontiers in Psychiatry, 3, 70. https://doi.org/10.3389/fpsyt.2012.00070
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research - Recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8(FEB), 1–18. https://doi.org/10.3389/fpsyg.2017.00213
Liu, J., Fang, J., Wang, Z., Rong, P., Hong, Y., Fan, Y., … Kong, J. (2016). Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. Journal of Affective Disorders, 205, 319–326. https://doi.org/10.1016/J.JAD.2016.08.003
Lundqvist, D., Flyikt, A., & Öhman, A. (1998). The Karolinska Directed Emotional Faces-KDEF Stockholm, Sweden. CD ROM from Department of Clinical Neuroscience, Psychology Section, Karolinska Institutet, 91, 630.
Malik, M. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation (Vol. 93).
Maraver, M. J., Steenbergen, L., Hossein, R., Actis-Grosso, R., Ricciardelli, P., Hommel, B., & Colzato, L. S. (2020). Transcutaneous vagus nerve stimulation modulates attentional resource deployment towards social cues. Neuropsychologia, 107465. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2020.107465
Marvel, F. A., Chen, C. C., Badr, N., Gaykema, R. P., & Goehler, L. E. (2004). Reversible inactivation of the dorsal vagal complex blocks lipopolysaccharide-induced social withdrawal and c-Fos expression in central autonomic nuclei. Brain, Behavior, and Immunity, 18(2), 123-134.
Mather, M., & Thayer, J. (2018). How heart rate variability affects emotion regulation brain networks. Current Opinion in Behavioral Sciences, 19, 98–104. https://doi.org/10.1016/j.cobeha.2017.12.017
Meeren, H. K. M., van Heijnsbergen, C. C. R. J., & de Gelder, B. (2005). Rapid perceptual integration of facial expression and emotional body language. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 16518–16523. https://doi.org/10.1073/pnas.0507650102
Miller, C. C., Holmes, P. V., & Edwards, G. L. (2002). Area postrema lesions elevate NPY levels and decrease anxiety-related behavior in rats. Physiology & Behavior, 77(1), 135-140.
Movius, H. L., & Allen, J. J. B. (2005). Cardiac Vagal Tone, defensiveness, and motivational style. Biological Psychology, 68(2), 147–162. https://doi.org/10.1016/J.BIOPSYCHO.2004.03.019
Nemeroff, C. B., Mayberg, H. S., Krahl, S. E., McNamara, J., Frazer, A., Henry, T. R., … Brannan, S. K. (2006). VNS therapy in treatment-resistant depression: Clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology, 31(7), 1345–1355. https://doi.org/10.1038/sj.npp.1301082
O’Brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. Psychological Bulletin. American Psychological Association. https://doi.org/10.1037/0033-2909.97.2.316
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24. https://doi.org/10.1111/j.1749-6632.2012.06751.x
Oram, M. W., & Perrett, D. I. (1994). Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. Journal of Cognitive Neuroscience, 6(2), 99–116. https://doi.org/10.1162/jocn.1994.6.2.99
Oveis, C., Cohen, A. B., Gruber, J., Shiota, M. N., Haidt, J., & Keltner, D. (2009). Resting respiratory sinus arrhythmia is associated with tonic positive emotionality. Emotion. Oveis, Christopher: University of California, Berkeley, Department of Psychology, 4135 Tolman Hall #1650, Berkeley, CA, US, 94720-1650, [email protected]: American Psychological Association. https://doi.org/10.1037/a0015383
Peelen, M. V., Atkinson, A. P., Andersson, F., & Vuilleumier, P. (2007). Emotional modulation of body-selective visual areas. Social Cognitive and Affective Neuroscience, 2(4), 274–83. https://doi.org/10.1093/scan/nsm023
Peña, D. F., Childs, J. E., Willett, S., Vital, A., McIntyre, C. K., & Kroener, S. (2014). Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Frontiers in Behavioral Neuroscience, 8, 327. https://doi.org/10.3389/fnbeh.2014.00327
Peña, D. F., Engineer, N. D., & McIntyre, C. K. (2013). Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biological psychiatry, 73(11), 1071-1077.
Pollick, F. E., Hill, H., Calder, A. J., & Patterson, H. (2003). Recognizing expressions from spatially and temporally modified movements. Perception, 32(7), 813–826. https://doi.org/10.1068/p3319
Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 32, 301–318. https://doi.org/10.1111/j.1469-8986.1995.tb01213.x
Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42(2), 123–146. https://doi.org/10.1016/S0167-8760(01)00162-3
Porges, S. W. (2003). Social Engagement and Attachment: A Phylogenetic Perspective. Annals of the New York Academy of Sciences, 1008, 31–47. https://doi.org/10.1196/annals.1301.004
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–143. https://doi.org/10.1016/j.biopsycho.2006.06.009
Porges S. W. (2009). The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleveland Clinic Journal of Medicine, 76(Suppl 2), S86–S90. https://doi.org/10.3949/ccjm.76.s2.17
Porges, S. W. (2011). The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, and self-regulation. The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, and self-regulation. W W Norton & Co.
Pulos, S., Elison, J., & Lennon, R. (2004). The hierarchical structure of the Interpersonal Reactivity Index. Social Behavior and Personality: An International Journal, 32(4), 355–359. https://doi.org/10.2224/sbp.2004.32.4.355
Quintana, D. S., Elstad, M., Kaufmann, T., Brandt, C. L., Haatveit, B., Haram, M., … Andreassen, O. A. (2016). Resting-state high-frequency heart rate variability is related to respiratory frequency in individuals with severe mental illness but not healthy controls. Scientific Reports, 6, 37212. Retrieved from https://doi.org/10.1038/srep37212
Quintana, D. S., Guastella, A. J., Outhred, T., Hickie, I. B., & Kemp, A. H. (2012). Heart rate variability is associated with emotion recognition: Direct evidence for a relationship between the autonomic nervous system and social cognition. International Journal of Psychophysiology, 86(2), 168–172. https://doi.org/10.1016/J.IJPSYCHO.2012.08.012
Rainville, P., Bechara, A., Naqvi, N., & Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology, 61(1), 5–18. https://doi.org/10.1016/J.IJPSYCHO.2005.10.024
Rajhans, P., Jessen, S., Missana, M., & Grossmann, T. (2016). Putting the face in context: Body expressions impact facial emotion processing in human infants. Developmental Cognitive Neuroscience, 19, 115–121. https://doi.org/10.1016/J.DCN.2016.01.004
Rong, P., Liu, J., Wang, L., Liu, R., Fang, J., Zhao, J., … Kong, J. (2016). Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study. Journal of Affective Disorders, 195, 172–179. https://doi.org/10.1016/j.jad.2016.02.031
Sackeim, H. A., Rush, A. J., George, M. S., Marangell, L. B., Husain, M. M., Nahas, Z., ... & Goodman, R. R. (2001). Vagus nerve stimulation (VNS™) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology, 25(5), 713-728.
Sellaro, R., Steenbergen, L., Verkuil, B., van IJzendoorn, M. H., & Colzato, L. S. (2015). Transcutaneous Vagus Nerve Stimulation (tVNS) does not increase prosocial behavior in Cyberball. Frontiers in Psychology, 6, 499. https://doi.org/10.3389/fpsyg.2015.00499
Sellaro, R., de Gelder, B., Finisguerra, A., & Colzato, L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex, 99, 213–223. https://doi.org/10.1016/j.cortex.2017.11.007
Sheehan, D., Lecrubier, Y., Harnett-Sheehan, K., Janavs, J., Weiller, E., Hergueta, T., … Dunbar, G. (1998). The Mini International Neuropsychiatric Interview (M.I.N.I.): The Development and Validation of a Structured Diagnostic Psychiatric Interview. Journal of Clinical Psychiatry, 59(Suppl. 20), 22–23. https://doi.org/10.1016/S0924-9338(99)80239-9
Silani, G., Lamm, C., Ruff, C. C., & Singer, T. (2013). Right Supramarginal Gyrus Is Crucial to Overcome Emotional Egocentricity Bias in Social Judgments. The Journal of Neuroscience, 33(39), 15466 LP – 15476. https://doi.org/10.1523/JNEUROSCI.1488-13.2013
Siqi-Liu, A., Harris, A. M., Atkinson, A. P., & Reed, C. L. (2018). Dissociable processing of emotional and neutral body movements revealed by μ-alpha and beta rhythms. Social Cognitive and Affective Neuroscience, 13(12), 1269–1279. https://doi.org/10.1093/scan/nsy094
Sperling, W., Reulbach, U., Bleich, S., Padberg, F., Kornhuber, J., & Mueck-Weymann, M. (2010). Cardiac Effects of Vagus Nerve Stimulation in Patients with Major Depression. Pharmacopsychiatry, 43, 7–11.
Sprengelmeyer, R., Young, A. W., Schroeder, U., Grossenbacher, P. G., Federlein, J., Buttner, T., & Przuntek, H. (1999). Knowing no fear. Proceedings of the Royal Society of London, Series B, 266, 2451–2456.
Steenbergen, L., Colzato, L. S., & Maraver, M. J. (2020). Vagal signaling and the somatic marker hypothesis: The effect of transcutaneous vagal nerve stimulation on delay discounting is modulated by positive mood. International Journal of Psychophysiology, 148, 84–92. https://doi.org/10.1016/j.ijpsycho.2019.10.010
Steenbergen, L., Sellaro, R., Stock, A. K., Verkuil, B., Beste, C., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. European Neuropsychopharmacology, 25, 773–778.
Stevens, J. P. (2002). Applied multivariate statistics for the social sciences, 4th ed. Applied multivariate statistics for the social sciences, 4th ed. Lawrence Erlbaum Associates Publishers.
Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV – Heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/J.CMPB.2013.07.024
Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 81–88. https://doi.org/10.1016/j.neubiorev.2008.08.004
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216. https://doi.org/10.1016/s0165-0327(00)00338-4
Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-Four Hour Time Domain Heart Rate Variability and Heart Rate: Relations to Age and Gender Over Nine Decades. Journal of the American College of Cardiology, 31(3), 593–601. https://doi.org/10.1016/S0735-1097(97)00554-8
Van den Stock, J., Righart, R., & de Gelder, B. (2007). Body expressions influence recognition of emotions in the face and voice. Emotion. de Gelder, Beatrice: Cognitive and Affective Neuroscience Laboratory, Tilburg University, P. O. Box 90153, Tilburg, Netherlands, 5000 LE, [email protected]: American Psychological Association. https://doi.org/10.1037/1528-3542.7.3.487
Vorst, H. C. M., & Bermond, B. (2001). Validity and reliability of the Bermond-Vorst Alexithymia Questionnaire. Personality and Individual Differences, 30(3), 413–434. https://doi.org/10.1016/S0191-8869(00)00033-7
Wang, Z., Lü, W., & Qin, R. (2013). Respiratory sinus arrhythmia is associated with trait positive affect and positive emotional expressivity. Biological Psychology, 93(1), 190–196. https://doi.org/10.1016/J.BIOPSYCHO.2012.12.006
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology. US: American Psychological Association. https://doi.org/10.1037/0022-3514.54.6.1063
Weippert, M., Kumar, M., Kreuzfeld, S., Arndt, D., Rieger, A., & Stoll, R. (2010). Comparison of three mobile devices for measuring R–R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. European Journal of Applied Physiology, 109(4), 779–786. https://doi.org/10.1007/s00421-010-1415-9
Williams, D. P., Tracy, L. M., Gerardo, G. M., Rahman, T., Spangler, D. P., Koenig, J., & Thayer, J. F. (2018). Sex moderates the relationship between resting heart rate variability and self-reported difficulties in emotion regulation. Emotion, No Pagination Specified-No Pagination Specified. https://doi.org/10.1037/emo0000500
Wolpert, L. (2008). Depression in an evolutionary context. Philosophy, Ethics, and Humanities in Medicine : PEHM, 3, 8. https://doi.org/10.1186/1747-5341-3-8