Recognition of plane paths and plane curves under linear pseudo-similarity transformations

Journal of Geometry - Tập 111 - Trang 1-24 - 2020
İdris Ören1, Djavvat Khadjiev2
1Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey
2Institute of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan

Tóm tắt

$$E^{2}_{1}$$ be the 2-dimensional pseudo-Euclidean space of index 1, $$G=Sim_{L}(E^{2}_{1})$$ be the group of all linear pseudo-similarities of $$E^{2}_{1}$$ and $$G=Sim_{L}^{+}(E^{2}_{1})$$ be the group of all orientation-preserving linear pseudo-similarities of $$E^{2}_{1}$$ . In this paper, groups $$Sim_{GL}^{+}(E^{2}_{1})$$ and $$Sim_{GL}(E^{2}_{1})$$ are defined. For the groups $$G=Sim_{GL}^{+}(E^{2}_{1}),Sim_{GL}(E^{2}_{1})$$ , $$Sim_{L}(E^{2}_{1}),$$ $$Sim_{L}^{+}(E^{2}_{1})$$ , G-invariants of paths in $$E^{2}_{1}$$ are investigated. Using hyperbolic numbers, a method to detect G-similarities of paths and curves is presented. We give an evident form of a path and a curve in terms of their G-invariants. For two paths and two curves with the common G-invariants, evident forms of all linear pseudo-similarity transformations, carrying the paths and the curves, are obtained.

Tài liệu tham khảo

Alcázar, J.G., Hermoso, C., Muntingh, G.: Detecting similarity of rational plane curves. J. Comput. Appl. Math. 269, 1–13 (2017) Alcázar, J.G., Hermoso, C., Muntingh, G.: Similarity detection of rational space curves. J. Symb. Comput. 85, 4–24 (2018) Anton, S.G.: Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups. Rend. Circ. Mat. Palermo 2(79), 87–97 (2006) Aristide, T.: Closed similarity Lorentzian affine manifolds. Proc. Am. Math. Soc. 132(12), 3697–3702 (2004) Ateş, F., Kaya, S., Yaylı, Y., Ekmekçi, N.F.: Generalized similar Frenet curves. Math. Sci. Appl. E-Notes 5(2), 26–35 (2017) Aviles A., Cervantes-Cota J.L., Klapp J., Luongo O., Quevedo H.: A Newtonian approach to the cosmological dark fluids. In: Klapp J., Ruíz Chavarría G., Medina Ovando A., López Villa A., Sigalotti L. (eds.) Selected topics of computational and experimental fluid mechanics. Environmental Science and Engineering. Springer, Cham. (2015). https://doi.org/10.1007/978-3-319-11487-3_43 Berthold, K.P.H.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. 4(4), 629–643 (1987) Birkhoff, G.: Hydrodynamics. Princeton University Press, Princeton (1960) Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, Berlin (1974) Capozziello, S., De Laurentis, M., et al.: Cosmographic constraints and cosmic fluids. Galaxies 1(3), 216–260 (2013) Cartan, E.: La métode du repére mobile, la théorie des groupes continus et les espaces généralisés. Exposés de Géométrie, V. Paris, Hermann (1935) Catoni, F., Cannata, R., et al.: Hyperbolic trigonometry in two-dimensional spacetime geometry. Nat. Cim. B 118, 475–491 (2003) Cervantes-Cota, J.L., Klapp, J.: Fluids in cosmology. Comput. Exp. Fluid Mech. Appl. Phys. 81, 71–105 (2014) Chou, K.S., Qu, C.Z.: Integrable equations arising from motions of plane curves. Phys. D 162(1–2), 9–33 (2002) Chorin, A., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, New York (2000) Collins, C.B., Lang, J.M.: Singularities in self-similar spacetimes. Class. Quantum Gravity 3(6), 1143–1150 (1986) Eardley, D.M.: Self-similar spacetimes: geometry and dynamics. Commun. Math. Phys. 37, 287–309 (1974) Encheva, R.P., Georgiev, G.H.: Similar Frenet curves. Result Math. 55, 359–372 (2009) Hauer, M., Jüttler, B.: Detecting affine equivalences of planar rational curves. EuroCG 2016, Lugano, Switzerland, March 30-April 1, (2016) Jia, Y.B.: Quaternions and rotations. Com S 477–577 (2008) Kamishima, Y.: Lorentzian similarity manifolds. Cent. Eur. J. Math. 10(5), 1771–1788 (2012) Khadjiev, D., Ören, İ., Pekşen, Ö.: Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry. Turk. J. Math. 37, 80–94 (2013) Khadjiev, D., Göksal, Y.: Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space. Adv. Appl. Clifford Algebras 26(2), 645–668 (2016) Khadjiev, D., Ören, İ., Pekşen, Ö.: Global invariants of paths and curves for the group of all linear similarities in the two-dimensional Euclidean space. Int. J. Geom. Methods Mod. Phys. 15(6), 1–28 (2018) Kune,s̆.J.: Similarity and Modeling in Science and Engineering. Cambridge International Science Publishing, Cambridge (2012) Nakayama, Y., Boucher, R.F.: Introduction to Fluid Mechanics. Butterworth-Heinemann, Oxford (1999) Özdemir, M., Şimşek, H.: Similar and self-similar curves in Minkowski n-space. Bull. Korean Math. Soc. 52(6), 2071–2093 (2015) Özdemir, M., Şimşek, H.: Shape curvatures of Lorentzian plane curves. Commun. Fac. Sci. Univ. Ank Ser. A1 Math. Stat. 66(2), 276–288 (2017) Pekşen, Ö., Khadjiev, D., Ören, İ.: Invariant parametrizations and complete systems of global invariants of curves in the pseudo-Euclidean geometry. Turk. J. Math. 36, 147–160 (2012) Schwartz, J.T., Sharir, M.: Identification of partially obscured objects in two dimensions by matching of noisy characteristic curves. Int. J. Robot. Res. 6(2), 29–44 (1987) Smits, A.J.: A Physical Introduction to Fluid Mechanics. Wiley, New York (2000) Sobczyk, G.: The hyperbolic number plane. Coll. Math. J. 26(4), 268–280 (1995) Şimşek, H., Özdemir, M.: On conformal curves in 2-Dimensional de Sitter Space. Adv. Appl. Clifford Algebras 26, 757–770 (2016) Taub, A.H.: General relativity: papers in honor of J. L. Synge, Chapter VIII, (ed. L. O’Raifeartaigh.) Oxford University Press, London (1972) Ulrych, S.: Relativistic quantum physics with hyperbolic numbers. Phys. Lett. B 625, 313–323 (2005)