Recognition memory decisions made with short- and long-term retrieval
Memory and Cognition - Trang 1-24 - 2024
Tóm tắt
In the present research, we produce a coherent account of the storage and retrieval processes in short- and long-term event memory, and long-term knowledge, that produce response accuracy and response time in a wide variety of conditions in our studies of recognition memory. Two to nine pictures are studied sequentially followed by a target or foil test picture in four conditions used in Nosofsky et al. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47, 316–342, (2021) and in our new paradigm: VM: target and foil responses to a given stimulus change from trial to trial; CM: the responses do not change from trial to trial; AN: every trial uses new stimuli; MIXED: combinations of VM, CN, and AN occur on each trial. In the new paradigm a given picture is equally often tested as old or new, but only in CM is the response key the same and learnable. Our model has components that have appeared in a variety of prior accounts, including learning and familiarity, but are given support by our demonstration that accuracy and response time data from a large variety of conditions can be predicted by these processes acting together, with parameter values that largely are unchanged. A longer version of this article, containing information not found here due to space, is available online
https://doi.org/10.31234/osf.io/h8msp
. The avalibility of the data (supplement materials), info and link is attached at the end section (
https://psyarxiv.com/h8msp
.).
Tài liệu tham khảo
Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition memory. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemporary developments in mathematical psychology: I. Learning, memory and thinking. W. H. Freeman.
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: II. Academic Press. https://doi.org/10.1016/S0079-7421(08)60422-3
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671
Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14325–14329. https://doi.org/10.1073/pnas.0803390105
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.
Busemeyer, J. R. (1982). Choice behavior in a sequential decision-making task. Organizational Behavior & Human Performance, 29(2), 175–207. https://doi.org/10.1016/0030-5073(82)90255-0
Cao, R., Nosofsky, R. M., & Shiffrin, R. M. (2017). The development of automaticity in short-term memory search: Item-response learning and category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(5), 669–679. https://doi.org/10.1037/xlm0000355
Cao, R., Shiffrin, R. M., & Nosofsky, R. M. (2018). Item frequency in probe-recognition memory search: Converging evidence for a role of item-response learning. Memory & Cognition, 46(3), 450–463. https://doi.org/10.3758/s13421-017-0777-1
Clark, T. K., & Merfeld, D. M. (2021). Statistical approaches to identifying lapses in psychometric response data. Psychonomic Bulletin & Review, 28(5), 1433–1457. https://doi.org/10.3758/s13423-021-01876-2
Cox, G. E., & Shiffrin, R. M. (2017). A dynamic approach to recognition memory. Psychological Review, 124(6), 795–860. https://doi.org/10.1037/rev0000076
Cox, G., & Shiffrin, R. M. (in press). Computational models of event memory. In M. J. Kahana & A. D. Wagner (Eds.), Handbook on human memory. Oxford University Press.
Criss, A. H., & Shiffrin, R. M. (2004). Context noise and item noise jointly determine recognition memory: A comment on Dennis and Humphreys (2001). Psychological Review, 111(3), 800–807. https://doi.org/10.1037/0033-295X.111.3.800
Criss, A. H., Malmberg, K. J., & Shiffrin, R. M. (2011). Output interference in recognition memory testing. Journal of Memory and Language, 64(4), 316–326.
Donkin, C., & Nosofsky, R. M. (2012). The structure of short-term memory scanning: An investigation using response time distribution models. Psychonomic Bulletin & Review, 19(3), 363–394. https://doi.org/10.3758/s13423-012-0236-8
Donkin, C., & Nosofsky, R. M. (2012). A power-law model of psychological memory strength in short- and long-term recognition. Psychological science, 23(6), 625–634. https://doi.org/10.1177/0956797611430961
Dunn, J. C. (2008). The dimensionality of the remember-know task: A state-trace analysis. Psychological Review, 115(2), 426–446.
Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A modeling language for mathematical optimization. SIAM Review, 59(2), 295–320. https://doi.org/10.1137/15M1020575
Gardiner, J. M., & Java, R. I. (1990). Recollective experience in word and nonword recognition. Memory & Cognition, 18(1), 23–30. https://doi.org/10.3758/BF03202642
Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91(1), 1–67. https://doi.org/10.1037/0033-295X.91.1.1
Harding, S. M., Cousineau, D., & Shiffrin, R. M. (2021). Dynamic perception of well-learned perceptual objects. Computational Brain & Behavior, 4(4), 497–518.
Holmes, W. R., Trueblood, J. S., & Heathcote, A. (2016). A new framework for modeling decisions about changing information: The piecewise linear ballistic accumulator model. Cognitive Psychology, 85, 1–29. https://doi.org/10.1016/j.cogpsych.2015.11.002
Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46(3), 269–299.
Laming, D. R. J. (1968). Information theory of choice-reaction times. Academic Press.
Lin, H-Y., & Oberauer, K. (2022). An interference model for visual working memory: Applications to the change detection task. Cognitive Psychology, 133, https://doi.org/10.1016/j.cogpsych.2022.101463
Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological discrimination. Psychometrika, 40(1), 77–105. https://doi.org/10.1007/BF02291481
Malmberg, K. J. (2008). Recognition memory: A review of the critical findings and an integrated theory for relating them. Cognitive Psychology, 57(4), 335–384. https://doi.org/10.1016/j.cogpsych.2008.02.004
Mandler, G., Pearlstone, Z., & Koopmans, H. S. (1969). Effects of organization and semantic similarity on recall and recognition. Journal of Verbal Learning & Verbal Behavior, 8(3), 410–423.
McElree, B., & Dosher, B. A. (1989). Serial position and set size in short-term memory: Time course of recognition. Journal of Experimental Psychology: General, 118(4), 346–373. https://doi.org/10.1037/0096-3445.118.4.346
Monsell, S. (1978). Recency, immediate recognition memory, and reaction time. Cognitive Psychology, 10(4), 465–501. https://doi.org/10.1016/0010-0285(78)90008-7
Nelson, A. B., & Shiffrin, R. M. (2013). The co-evolution of knowledge and event memory. Psychological Review, 120(2), 356–394.
Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 39–57.
Nosofsky, R. M. (2011). The generalized context model: An exemplar model of classification. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization (pp. 18–39). Cambridge University Press.
Nosofsky, R. M. (2016). An exemplar-retrieval model of short-term memory search: Linking categorization and probe recognition. In B. H. Ross (Ed.), The psychology of learning and motivation (pp. 47–84). Elsevier Academic Press.
Nosofsky, R. M., Cao, R., Cox, G. E., & Shiffrin, R. M. (2014). Familiarity and categorization processes in memory search. Cognitive Psychology, 75, 97–129. https://doi.org/10.1016/j.cogpsych.2014.08.003
Nosofsky, R. M., Cox, G. E., Cao, R., & Shiffrin, R. M. (2014). An exemplar-familiarity model predicts short-term and long-term probe recognition across diverse forms of memory search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1524–1539. https://doi.org/10.1037/xlm0000015
Nosofsky, R. M., Cao, R., Harding, S., & Shiffrin, R. M. (2021). Modeling short- and long-term memory contributions to recent event recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(2), 316–342.
Nosofsky, R. M., & Donkin, C. (2016). Response-time evidence for mixed memory states in a sequential-presentation change-detection task. Cognitive Psychology, 84, 31–62.
Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M. (2011). Short-term memory scanning viewed as exemplar-based categorization. Psychological Review, 118(2), 280–315.
Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104(2), 266–300.
Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory capacity? Psychological Bulletin, 142(7), 758–799.
Raaijmakers, J. G. W., & Shiffrin, R. M. (1980). SAM: A theory of probabilistic search of associative memory. In G. H. Bower (Ed.), The psychology of learning and motivation (14th ed., pp. 207–262). Academic Press.
Raaijmakers, J. G., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88(2), 93–134. https://doi.org/10.1037/0033-295X.88.2.93
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. https://doi.org/10.1037/0033-295X.85.2.59
Ratcliff, R., & Kang, I. (2021). Qualitative speed-accuracy tradeoff effects can be explained by a diffusion/fast guess mixture model. Scientific Reports, 11(1), 15169.
Roediger, H. L., III., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological science, 17(3), 249–255.
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1–66. https://doi.org/10.1037/0033-295X.84.1.1
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190. https://doi.org/10.1037/0033-295X.84.2.127
Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM: Retrieving effectively from memory. Psychonomic Bulletin & Review, 4(2), 145–166.
Shiffrin, R. M., & Steyvers, M. (1998). The effectiveness of retrieval from memory. In M. Oaksford & N. Chater (Eds.), Rational models of cognition (pp. 73–95). Oxford University Press.
Smith, E. E. (1978). Theories of semantic memory. In W. K. Estes (Ed.), Handbook of learning and cognitive processes: Linguistic functions in cognitive theory (6th ed., pp. 1–56). Erlbaum.
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654. https://doi.org/10.1126/science.153.3736.652
Vickers, D. (1979). Decision processes in visual perception. Academic Press.