Recipes for adjoint code construction
Tóm tắt
Từ khóa
Tài liệu tham khảo
BAUR W., 1983, The complexity of partial derivatives, Theoretical Computer Science, 22, 317, 10.1016/0304-3975(83)90110-X
BENNET W., 1989, The Kalman smoother for a linear quasi-geostrophic model of ocean circulation, Dynamics of Atmospheres and Oceans, 13, 219, 10.1016/0377-0265(89)90041-9
BISCHOF C. H., Argonne National Laboratory, Argonne, Ill. To appear in IEEE Computational Science &
CACUCCI D., 1981, Sensitivity theory for nonlinear systems. Part I: Nonlinear functional analysis approach, Journal of Mathematical Physics, 22, 2794, 10.1063/1.525186
CHRISTIANSON B., School of Information Sciences
COURTIER P., 1987, Variational assimilation of meteorological observations with the adjoint vorticity equation Part II: Numerical results, Quarterly Journal of the Royal Meteorological Society, 113, 1329, 10.1002/qj.49711347813
GHIL M., 1989, Meteorological data assimilation for oceanographers. Part I: Description and theoretical framework, Dynamics of Atmospheres and Oceans, 13, 171, 10.1016/0377-0265(89)90040-7
GIERING R., Users manual
GIERING R. AND MAIER-REIMER E. 1997. Data assimilation into the Hamburg LSG OGCM with its adjoint model in prep. GIERING R. AND MAIER-REIMER E. 1997. Data assimilation into the Hamburg LSG OGCM with its adjoint model in prep.
GILBERT J., 1992, Automatic Differentiation and Iterative Processes, Optimization Methods and Software, 1, 13, 10.1080/10556789208805503
GRIEWANK A., Mathematical Programming: Recent Developments and Applications
GRIEWANK A., 1992, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optimization Methods and Software, 1, 35, 10.1080/10556789208805505
KAMINSKI T., 1996, Sensitivity of the seasonal cycle of CO2 at remote monitoring stations with respect to seasonal surface exchange fluxes determined with the adjoint of an atmospheric transport model, Physics and Chemistry of the Earth, 21, 5, 10.1016/S0079-1946(97)81142-1
KEARFOTT R., Computational Differentiation: Techniques, Applications, and Tools, 75
KENNEDY K., Program Flow Analysis: Theory and Applications
LONG R., 1989, Data assimilation into a numerical equatorial ocean model. Part I: The model and assimilation algorithm, Dynamics of Atmospheres and Oceans, 13, 379, 10.1016/0377-0265(89)90047-X
LONG R., 1989, Data assimilation into a numerical equatorial ocean model. Part II: Assimilation experiments, Dynamics of Atmospheres and Oceans, 13, 413, 10.1016/0377-0265(89)90048-1
F., 1991, EGS 16th General Assembly, C107
MAROTZKE J. ZHANG Q. GIERING R. STAMMER D. HILL C. AND LEE T. 1998. The Linearization and Adjoint of the MIT Ocean General Circulation Model. in prep. MAROTZKE J. ZHANG Q. GIERING R. STAMMER D. HILL C. AND LEE T. 1998. The Linearization and Adjoint of the MIT Ocean General Circulation Model. in prep.
NAG, Fortran Library Manual--Mark 13
ROSTAING N., 1993, Automatic differentiation in Odyss~e, Tellus, 45, 558, 10.3402/tellusa.v45i5.15060
SCHR TER, Ocean Circulation Models: Combining Data and Dynamics, 257
SCHR TER, 1992, Variational assimilation of GEOSAT data into an eddy-resolving model of the gulf-stream extension area, Journal of Physical Oceanography, 23, 925, 10.1175/1520-0485(1993)023<0925:VAOGDI>2.0.CO;2
TALAGRAND O., Automatic Differentiation of Algorithms: Theory, Implementation and Application, 169
TALAGRAND O., 1987, Variational assimilation of meteorological observations with the adjoint vorticity equation Part I: Theory, Quarterly Journal of the Royal Meteorological Society, 113, 1311, 10.1002/qj.49711347812
THACKER W. 1987. Three lectures on fitting numerical models to observations. Technical report GKSS Forschungszentrum Geesthacht GmbH Geesthacht Federal Republic of Germany. THACKER W. 1987. Three lectures on fitting numerical models to observations. Technical report GKSS Forschungszentrum Geesthacht GmbH Geesthacht Federal Republic of Germany.
THACKER W., Automatic Differentiation of Algorithms: Theory, Implementation and Application, 191
TZIPERMAN E., 1989, An optimal control/adjoint equation approach to studying the ocean general circulation, Journal of Physical Oceanography, 19, 1471, 10.1175/1520-0485(1989)019<1471:AOCEAT>2.0.CO;2
TZIPERMAN E., 1992, Ocean data analysis using a general circulation model, I, simulations, Journal of Physical Oceanography, 22, 1434, 10.1175/1520-0485(1992)022<1434:ODAUAG>2.0.CO;2
TZIPERMAN E., 1992, Ocean data analysis using a general circulation model, II, North Atlantic model, Journal of Physical Oceanography, 22, 1458, 10.1175/1520-0485(1992)022<1458:ODAUAG>2.0.CO;2
WEBSTER S., 1994, Workshop on Adjoint Applications in Dynamic Meterology
Q., 1996, Generalized adjoint for physical processes with parameterized discontinuities: Part i: Basic issues and heuristic examples, J. Atmospheric Sciences, 53, 1123, 10.1175/1520-0469(1996)053<1123:GAFPPW>2.0.CO;2