Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications

Springer Science and Business Media LLC - Tập 9 - Trang 293-310 - 2019
Harsh Ranawat1, Sagnik Pal1, Nirmal Mazumder1
1Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India

Tóm tắt

Two photon fluorescence microscopy and the numerous technical advances to it have served as valuable tools in biomedical research. The fluorophores (exogenous or endogenous) absorb light and emit lower energy photons than the absorption energy and the emission (fluorescence) signal is measured using a fluorescence decay graph. Additionally, high spatial resolution images can be acquired in two photon fluorescence lifetime imaging (2P-FLIM) with improved penetration depth which helps in detection of fluorescence signal in vivo. 2P-FLIM is a non-invasive imaging technique in order to visualize cellular metabolic, by tracking intrinsic fluorophores present in it, such as nicotinamide adenine dinucleotide, flavin adenine dinucleotide and tryptophan etc. 2P-FLIM of these molecules enable the visualization of metabolic alterations, non-invasively. This comprehensive review discusses the numerous applications of 2P-FLIM towards cancer, neuro-degenerative, infectious diseases, and wound healing.

Tài liệu tham khảo

Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006. Periasamy A, Clegg R. FLIM microscopy in biology and medicine. Boca Raton: CRC Press, Taylor & Francis Group; 2010. Diaspro A, editor. Confocal and two-photon microscopy: foundations, applications and advances. Hoboken: Wiley; 2001. Becker W. Fluorescence lifetime imaging—techniques and applications. J Microsc. 2012;247(2):119–36. Becker W. Advanced time-correlated single photon counting techniques. Cham: Springer; 2015. Lin H, Herman P, Lakowicz J. Fluorescence lifetime-resolved pH imaging of living cells. Cytometry. 2003;52A(2):77–89. Williamson D, Lund P, Krebs H. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967;103(2):514–27. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y. Oxidation–reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem. 1979;254(11):4764–71. Periasamy A, Day R. Molecular imaging. New York: Oxford Univ Press; 2005. Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis. 2009;26(4):357–70. Ghukasyan V, Hsu Y, Kung S, Kao JF. Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells. J Biomed Opt. 2007;12(2):024016. Jyothikumar V, Sun Y, Periasamy A. Investigation of tryptophan–NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy. J Biomed Opt. 2013;18(6):060501. Sun Y, Day R, Periasamy A. Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat Protoc. 2011;6(9):1324–40. Skala M, Riching K, Bird D, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely PJ, Ramanujam N. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt. 2007;12(2):024014. Kao FJ, Deka G, Mazumder N. Cellular autofluroscence detection through FLIM/FRET microscopy. Curr Trends Opt Photon. 2015;129:471–82. Periasamy A, Mazumder N, Sun Y, Christopher KG, Day RN. FRET microscopy: basics, issues and advantages of FLIM-FRET imaging. In: Becker W, editor. Advanced time-correlated single photon counting applications. Cham: Springer; 2015. p. 249–76. Steiner R. Principles of fluorescence spectroscopy. Anal Biochem. 1984;137(2):539. Bacskai B, Skoch J, Hickey G, Allen R, Hyman B. Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques. J Biomed Opt. 2003;8(3):368. Bird D, Yan L, Vrotsos K, Eliceiri K, Vaughan E, Keely PJ, White JG, Ramanujam N. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Can Res. 2005;65(19):8766–73. Mazumder N, Lyn R, Singaravelu R, Ridsdale A, Moffatt D, Hu CW, Tsai HR, McLauchlan J, Stolow A, Kao FJ, Pezacki JP. Fluorescence lifetime imaging of alterations to cellular metabolism by domain 2 of the hepatitis C virus core protein. PLoS ONE. 2013;8(6):e66738. Vishwasrao H, Heikal A, Kasischke K, Webb W. Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J Biol Chem. 2005;280(26):25119–26. Lakowicz J, Szmacinski H, Nowaczyk K, Johnson M. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci. 1992;89(4):1271–5. Blinova K, Carroll S, Bose S, Smirnov A, Harvey J, Knutson JR, Balaban RS. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions. Biochemistry. 2005;44(7):2585–94. Wakita M, Nishimura G, Tamura M. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ. J Biochem. 1995;118(6):1151–60. Ramanujan V, Jo J, Cantu G, Herman B. Spatially resolved fluorescence lifetime mapping of enzyme kinetics in living cells. J Microsc. 2008;230(3):329–38. Li D, Zheng W, Qu J. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence. Opt Lett. 2008;33(20):2365. Chia T, Williamson A, Spencer D, Levene M. Multiphoton fluorescence lifetime imaging of intrinsic fluorescence in human and rat brain tissue reveals spatially distinct NADH binding. Opt Express. 2008;16(6):4237. Stringari C, Cinquin A, Cinquin O, Digman M, Donovan P, Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci. 2011;108(33):13582–7. Conklin M, Provenzano P, Eliceiri K, Sullivan R, Keely P. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem Biophys. 2009;53(3):145–57. Sun Y, Phipps J, Elson D, Stoy H, Tinling S, Meier J, Poirier B, Chuang FS, Farwell DG, Marcu L. Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett. 2009;34(13):2081. Thorling C, Liu X, Burczynski F, Fletcher L, Gobe G, Roberts M. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats. J Biomed Opt. 2011;16(11):116011. Yaseen M, Sakadžić S, Wu W, Becker W, Kasischke K, Boas D. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed Opt Express. 2013;4(2):307. Yaseen M, Sutin J, Wu W, Fu B, Uhlirova H, Devor A, Boas DA, Skadžić S. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo. Biomed Opt Express. 2017;8(5):2368. Rmoso C, Forster LS. Tryptophan fluorescence lifetimes in lysozyme. J Biol Chem. 1975;250(10):3738–45. Li C, Pastila R, Pitsillides C, Runnels J, Puoris’haag M, Côté D, Lin CP. Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence. Opt Express. 2010;18(2):988. Yang W, Yuste R. In vivo imaging of neural activity. Nat Methods. 2017;14(4):349–59. Mostany R, Miquelajauregui A, Shtrahman M, Portera-Cailliau C. Two-photon excitation microscopy and its applications in neuroscience. In: Verveer PJ, editor. Advanced fluorescence microscopy. New York: Humana Press; 2015. p. 25–42. Day R, Davidson M. The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev. 2009;38(10):2887. Mostany R, Portera-Cailliau C. A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J Vis Exp. 2008;12:678. Yan P, Bero A, Cirrito J, Xiao Q, Hu X, Wang Y, Gonzales E, Holtzman DM, Lee JM. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J Neurosci. 2009;29(34):10706–14. Klunk W, Bacskai B, Mathis C, Kajdasz S, McLellan M, Frosch MP, Debnath ML, Holt DP, Wang Y, Hyman BT. Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropathol Exp Neurol. 2002;61(9):797–805. Hülsmann S, Hagos L, Heuer H, Schnell C. Limitations of sulforhodamine 101 for brain imaging. Front Cell Neurosci. 2017;11:44. Liao Y, Génot V, Audibert J, Pansu R. In situ kinetics study of the formation of organic nanoparticles by fluorescence lifetime imaging microscopy (FLIM) along a microfluidic device. Microfluidics Nanofluidics. 2016;20(4):1–11. Damalakiene L, Karabanovas V, Bagdonas S, Rotomskis R. Fluorescence-lifetime imaging microscopy for visualization of quantum dots’ endocytic pathway. Int J Mol Sci. 2016;17(4):473. Basuki J, Duong H, Macmillan A, Erlich R, Esser L, Akerfeldt MC, Whan RM, Kavallaris M, Boyer C, Davis TP. Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano. 2013;7(11):10175–89. Rossi EA, Rangel-Fonseca P, Parkins K, Fischer W, Latchney LR, Folwell MA, Williams DR, Dubra A, Chung MM. In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed Opt Express. 2013;4(11):2527–39. Geng Y, Dubra A, Yin L, Merigan W, Sharma R, Libby RT, Williams DR. Adaptive optics retinal imaging in the living mouse eye. Biomed Opt Express. 2012;3(4):715. Wahl D, Jian Y, Bonora S, Zawadzki R, Sarunic M. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice. Biomed Opt Express. 2015;7(1):1. Morgan J, Dubra A, Wolfe R, Merigan W, Williams D. In Vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Investig Opthalmol Vis Sci. 2009;50(3):1350. Sharma R, Yin L, Geng Y, Merigan W, Williams D, Hunter J. In vivo two-photon imaging of the mouse retina. J Vis. 2012;12(14):51. Hunter J, Masella B, Dubra A, Sharma R, Yin L, Merigan WH, Palczewska G, Palczewski K, Williams DR. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy. Biomed Opt Express. 2010;2(1):139. Sharma R, Williams D, Palczewska G, Palczewski K, Hunter J. Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye. Investig Opthalmol Vis Sci. 2016;57(2):632. Feeks J, Hunter J. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. Biomed Opt Express. 2017;8(5):2483. Kapsokalyvas D, Barygina V, Cicchi R, Fiorillo C, Pavone FS. Evaluation of the oxidative stress of psoriatic fibroblasts based on spectral two-photon fluorescence lifetime imaging. In: Multiphoton microscopy in the biomedical sciences XIII. International Society for Optics and Photonics; 2013. Vol. 8588, p. 85882D. Huck V, Gorzelanny C, Thomas K, Getova V, Niemeyer V, Zens K, Unnerstall TR, Feger JS, Fallah MA, Metze D, Stānder S. From morphology to biochemical state—intravital multiphoton fluorescence lifetime imaging of inflamed human skin. Sci Rep. 2016;6(1):1–12. Kantelhardt S, Kalasauskas D, König K, Kim E, Weinigel M, Uchugonova A, Giese A. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue. J Neurooncol. 2016;127(3):473–82. Marcu L, Hartl B. Fluorescence lifetime spectroscopy and imaging in neurosurgery. IEEE J Sel Top Quantum Electron. 2012;18(4):1465–77. Gratton E, Breusegem S, Sutin JD, Ruan Q, Barry NP. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt. 2003;8(3):381–91. El-Serag H. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–1273.e1. Miyoshi H, Moriya K, Tsutsumi T, Shinzawa S, Fujie H, Shintani Y, Fujinaga H, Goto K, Todoroki T, Suzuki T, Miyamura T. Pathogenesis of lipid metabolism disorder in hepatitis C: polyunsaturated fatty acids counteract lipid alterations induced by the core protein. J Hepatol. 2011;54(3):432–8. Alvisi G, Madan V, Bartenschlager R. Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol. 2011;8(2):258–69. Tolles WM, Nibler JW, McDonald JR, Harvey AB. A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS). Appl Spectrosc. 1977;31(4):253–71. Buryakina T, Su PT, Gukassyan V, Syu WJ, Kao FJ. Monitoring cellular metabolism of 3T3 upon wild type E. coli infection by mapping NADH with FLIM. Chin Opt Lett. 2010;8(10):931–3. Paul RJ, Schneckenburger H. Oxygen concentration and the oxidation-reduction state of yeast: determination of free/bound NADH and flavins by time-resolved spectroscopy. Naturwissenschaften. 1996;83(1):32–5. Szaszák M, Steven P, Shima K, Orzekowsky-Schröder R, Hüttmann G, König IR, Solbach W, Rupp J. Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell. PLoS Pathog. 2011;7(7):e1002108. Hou L, Ning P, Feng Y, Ding Y, Bai L, Li L, Yu H, Meng X. A two-photon fluorescent probe for monitoring autophagy via fluorescence lifetime imaging. Anal Chem. 2018;90(12):7122–6. Gómez CA, Fu B, Sakadžić S, Yaseen MA. Cerebral metabolism in a mouse model of Alzheimer’s disease characterized by two-photon fluorescence lifetime microscopy of intrinsic NADH. Neurophotonics. 2018;4:045008. Le V, Yoo S, Yoon Y, Wang T, Kim B, Lee S, Lee KH, Kim KH, Chung E. Brain tumor delineation enhanced by moxifloxacin-based two-photon/CARS combined microscopy. Biomed Opt Express. 2017;8(4):2148–61. Kasischke K, Lambert E, Panepento B, Sun A, Gelbard H, Burgess RW, Foster TH, Nedergaard M. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab. 2010;31(1):68–81. Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity. Clin Neurosci Res. 2001;1(6):407–18. Chakraborty S, Nian F, Tsai J, Karmenyan A, Chiou A. Quantification of the metabolic state in cell-model of Parkinson’s disease by fluorescence lifetime imaging microscopy. Sci Rep. 2016;6(1):1–9. Dauer W, Przedborski S. Parkinson’s disease. Neuron. 2003;39(6):889–909. Schapira A. Evidence for mitochondrial dysfunction in Parkinson’s disease-a critical appraisal. Mov Disord. 2004;9(2):125–38. Chance B, Jamieson D, Coles H. Energy-linked pyridine nucleotide reduction: inhibitory effects of hyperbaric oxygen in vitro and in vivo. Nature. 1965;206(4981):257–63. Rinnenthal J, Börnchen C, Radbruch H, Andresen V, Mossakowski A, Siffrin V, Seelemann T, Spiecker H, Moll I, Herz J, Hauser AE. Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation. PLoS ONE. 2013;8(4):e60100. Yasuda R, Harvey CD, Zhong H, Sobczyk A, van Aelst L, Svoboda K. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci. 2006;9:283–91. Resendez S, Stuber G. In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behavior. Neuropsychopharmacology. 2014;40(1):238–9. Mayevsky A, Zarchin N, Kaplan H, Haveri J, Haselgroove J, Chance B. Brain metabolic responses to ischemia in the mongolian gerbil: in vivo and freeze trapped redox scanning. Brain Res. 1983;276(1):95–107. Kunz W, Gellerich F. Quantification of the content of fluorescent flavoproteins in mitochondria from liver, kidney cortex, skeletal muscle, and brain. Biochem Med Metab Biol. 1993;50(1):103–10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. Skala M, Riching K, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri K, White JG, Ramanujam N. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci. 2007;104(49):19494–9. Zoumi A, Yeh A, Tromberg B. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci. 2002;99(17):11014–9. Pena A-M., Decencière E., Brizion S., Victorin S., Koudoro S., et al. Multiphoton FLIM in cosmetic clinical research. In: Multiphoton microscopy and fluorescence lifetime imaging: applications in biology and medicine. 2018. Tadrous P, Siegel J, French P, Shousha S, Lalani E, Stamp G. Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer. J Pathol. 2003;199(3):309–17. Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Men’s Health. 2018;12(6):1807–23. Alam SR, Wallrabe H, Svindrych Z, Chaudhary AK, Christopher KG, Chandra D, Periasamy A. Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: an NADH, FAD and tryptophan FLIM assay. Sci Rep. 2017;7(1):10451. Deka G, Wu W, Kao F. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging. J Biomed Opt. 2012;18(6):061222. Wang H, Shi L, Qin J, Yousefi S, Li Y, Wang R. Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing. Lasers Surg Med. 2014;46(6):470–8. Taylor J, Laity P, Hicks J, Wong S, Norris K, Khunkamchoo P, Johnson AF, Cameron RE. Extent of iron pick-up in deforoxamine-coupled polyurethane materials for therapy of chronic wounds. Biomaterials. 2005;26(30):6024–33. Edwards JV, Howley P, Cohen IK. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings. Int J Pharm. 2004;284(1):1–2. Gardner SE, Frantz RA, Troia C, Eastman S, MacDonald M, Buresh K, Healy D. A tool to assess clinical signs and symptoms of localized infection in chronic wounds: development and reliability. Ostomy/Wound Manag. 2001;47(1):40–7. Sanchez WY, Prow TW, Sanchez WH, Grice J, Roberts MS. Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD (P) H by multiphoton tomography and fluorescence lifetime imaging microscopy. J Biomed Opt. 2010;15(4):046008. Wang KH, Majewska A, Schummers J, Farley B, Hu C, Sur M, Tonegawa S. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell. 2006;126(2):389–402. Birkner A, Tischbirek CH, Konnerth A. Improved deep two-photon calcium imaging in vivo. Cell Calcium. 2017;64:29–35. Gannaway J, Sheppard CJR. Second-harmonic imaging in the scanning optical microscope. Opt Quant Electron. 1978;10:435. Campagnola P, Loew L. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol. 2003;21(11):1356–60. Koehler MJ, Speicher M, Lange-Asschenfeldt S, Stockfleth E, Metz S, Elsner P, Kaatz M, König K. Clinical application of multiphoton tomography in combination with confocal laser scanning microscopy for in vivo evaluation of skin diseases. Exp Dermatol. 2011;20(7):589–94. König K, Simon U, Halbhuber JK. 3D-resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope. Cell Mol Biol. 1996;42:1181–94. Williams RM, Zipfel WR, Webb WW. Interpreting second-harmonic generation images of collagen I fibrils. Biophys J. 2005;88(2):1377–86. Torkian B, Yeh A, Engel R, Sun C, Tromberg B, Wong B. Modeling Aberrant Wound healing using tissue-engineered skin constructs and multiphoton microscopy. Arch Facial Plast Surg. 2004;6(3):180. Jones DJ, Ramser EH, Woessner EA, Quinn PK. In vivo multiphoton microscopy detects longitudinal metabolic changes associated with delayed skin wound healing. Commun Biol. 2018;1:198. Cuttle L, Nataatmadja M, Fraser J, Kempf M, Kimble R, Hayes M. Collagen in the scarless fetal skin wound: detection with Picrosirius-polarization. Wound Repair Regen. 2005;13(2):198–204. Gehlsen U, Oetke A, Szaszák M, Koop N, Paulsen F, Gebert A, Huettmann G, Steven P. Two-photon fluorescence lifetime imaging monitors metabolic changes during wound healing of corneal epithelial cells in vitro. Graefe’s Arch Clin Exp Ophthalmol. 2012;250(9):1293–302. Quinn KP, Leal EC, Tellechea A, Kafanas A, Auster ME, Veves A, Georgakoudi I. Diabetic wounds exhibit distinct microstructural and metabolic heterogeneity through label-free multiphoton microscopy. J Investig Dermatol. 2016;136(1):342–4. Liu J. Two-photon microscopy in pre-clinical and clinical cancer research. Front Optoelectron. 2015;8(2):141–51. Cicchi R, Kapsokalyvas D, De Giorgi V, Maio V, Van Wiechen A, Massi D, Lotti T, Pavone FS. Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy. J Biophoton. 2009;3(1–2):34–43. Yasui T, Tohno Y, Araki T. Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry. J Biomed Opt. 2004;9(2):259. Becker W, Shcheslavkiy V, Frere S, Slutsky I. Spatially resolved recording of transient fluorescence-lifetime effects by line-scanning TCSPC. Microsc Res Tech. 2014;77(3):216–24. Ryu J, Kang U, Kim J, Kim H, Kang HJ, Kim H, Sohn KD, Jeong HJ, Yoo H, Gweon B. Real-time visualization of two-photon fluorescence lifetime imaging microscopy using a wavelength-tunable femtosecond pulsed laser. Biomed Opt Express. 2018;9(7):3449–63. Madden SK, Zettel LM, Majewska KA, Brown BE. Brain tumor imaging: live imaging of glioma by two-photon microscopy. Cold Spring Harb Protoc. 2013;231–236. Cadby A, Dean R, Fox A, Jones R, Lidzey D. Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope. Nano Lett. 2005;5(11):2232–7. Vogel SS, Thaler C, Blank PS, Koushik SV. Time resolved fluorescence anisotropy. FLIM Microsc Biol Med. 2009;21(1):245–88. Yu Q, Heikal AA. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J Photochem Photobiol, B. 2009;95(1):46–57. Slepkov A, Ridsdale A, Wan H, Wang M, Pegoraro A, Moffatt DJ, Pezacki JP, Stolow A, Wan HN, Wang MH, Fao KJ. Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy. J Biomed Opt. 2011;16(2):021103. Lin P, Lin Y, Chang C, Kao FJ. Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution. Jpn J Appl Phys. 2013;52(2R):028004.