Recent trends in functionalized nanoparticles loaded polymeric composites: An energy application

Materials Science for Energy Technologies - Tập 3 - Trang 515-525 - 2020
Tawfik A. Saleh1, Nagaraj P. Shetti2, Mahesh M. Shanbhag2, Kakarla Raghava Reddy3, Tejraj M. Aminabhavi4
1Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
2Center for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580 030, India
3School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
4Pharmaceutical Engineering, SET’s College of Pharmacy, Dharwad 580 002, Karnataka, India

Tài liệu tham khảo

Asmatulu, 2015, Synthesis and analysis of injection-molded nanocomposites of recycled high-density polyethylene incorporated with graphene nanoflakes, Polymer Compos., 36, 1565, 10.1002/pc.23063 Schmid, 2012, Fundamental investigations regarding barrier properties of grafted PVOH layers, Int. J. Polym. Sci., 10.1155/2012/637837 Schmid, 2014, Water repellence and oxygen and water vapor barrier of pvoh-coated substrates before and after surface esterification, Polymers, 6, 2764, 10.3390/polym6112764 M. Naito, T. Yokoyama, K. Hosokawa, K. Nogi, Nanoparticle technology handbook, Elsevier, 2018. International Organization for Standardization (ISO). Nanotechnologies—Vocabulary. In Part 2: Nano-Objects; International Organization for Standardization: Geneva, Switzerland, 2015. Okada, 2006, Twenty years of polymer-clay nanocomposites, Macromol. Mater. Eng., 291, 1449, 10.1002/mame.200600260 E. Bugnicourt, Development of Sub-Micro Structured Composites based on an Epoxy Matrix and Pyrogenic Silica: Mechanical Behavior Related to the Interactions and Morphology at Multi-Scale. Ph.D. Thesis, Intelligence and National Security Alliance (INSA), Villeurbanne, France, 2005. Müller, 2017, Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields, Nanomaterials, 7, 74, 10.3390/nano7040074 McAdam, 2008, Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization, J. Appl. Polym. Sci., 108, 2242, 10.1002/app.25599 Lee, 2009, Free-Standing nanocomposite multilayers with various length scales, adjustable internal structures, and functionalities, J. Am. Chem. Soc., 131, 2579, 10.1021/ja8064478 Barreca, 2015, Fe2O3 -TiO2 nanosystems by a hybrid PE-CVD/ALD approach: controllable synthesis, growth mechanism, and photocatalytic properties, Cryst. Eng. Comm., 17, 6219, 10.1039/C5CE00883B Sinha Ray, 2003, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 28, 1539, 10.1016/j.progpolymsci.2003.08.002 Bertuoli, 2014, Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane, Appl. Clay Sci., 87, 46, 10.1016/j.clay.2013.11.020 M. Huskic, M. Zigon, M. Ivankovíc, Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts, Appl. Clay Sci., 85 (2013) 109–115. Usuki, 1993, Synthesis of nylon 6-clay hybrid, J. Mater. Res., 8, 1179, 10.1557/JMR.1993.1179 Messersmith, 1994, Synthesis and characterization of layered silicate-epoxy nanocomposites, Chem. Mater., 6, 1719, 10.1021/cm00046a026 Xia, 2003, Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation, J. Appl. Polym. Sci., 87, 1811, 10.1002/app.11627 Costantino, 2012, Microstructure of PP/clay nanocomposites produced by shear induced injection moulding, Proc. Mater. Sci., 1, 34, 10.1016/j.mspro.2012.06.005 Xiao, 2013, Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films, J. Mater. Chem. B, 1, 3477, 10.1039/c3tb20303d Si, 2015, A multifunctional transparent superhydrophobic gel nanocoating with self-healing properties, Chem. Commun., 51, 16794, 10.1039/C5CC06977G Li, 2011, Flame retardant polymer/clay layer-by-layer assemblies on cotton fabric, Abstr. Pap. Am. Chem. Soc., 241 Holder, 2014, Stretchable gas barrier achieved with partially hydrogen-bonded multilayer nanocoating, Macromol. Rapid Commun., 35, 960, 10.1002/marc.201400104 Joshi, 2011, Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique, J. Appl. Polym. Sci., 119, 2793, 10.1002/app.32867 Rahman, 2015, Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells, Nat. Commun., 6 Wong, 2014, Nanotechnology impact on the automotive industry, Recent Patents Nanotechnol., 8, 181, 10.2174/187221050803141027101058 Parangusan, 2018, Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators, Scientific reports, 8, 1, 10.1038/s41598-017-19082-3 Biswas, 2019, Highly efficient and durable piezoelectric nanogenerator and photo-power cell based on CTAB modified montmorillonite incorporated PVDF film, ACS Sustainable Chem. Eng., 7, 4801, 10.1021/acssuschemeng.8b05080 Surmenev, 2019, Hybrid lead-free polymer-based scaffolds with improved piezoelectric response for biomedical energy-harvesting applications: a review, Nano Energy, 62, 475, 10.1016/j.nanoen.2019.04.090 Wang, 2017, Bio-inspired polydopamine coating as a facile approach to constructing polymer nanocomposites for energy storage, J. Mater. Chem. C, 5, 3112, 10.1039/C7TC00387K Li, 2018, Nanostructured ferroelectric-polymer composites for capacitive energy storage, Small Methods, 2, 1700399, 10.1002/smtd.201700399 Zhan, 2017, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. C, 5, 1569, 10.1039/C6TC04269D Abraham, 2018, Dye sensitized solar cells using catalytically active CuO-ZnO nanocomposite synthesized by single step method, Spectrochim. Acta Part A: Mol. Biomolecular Spectroscopy, 200, 116, 10.1016/j.saa.2018.04.015 Saidi, 2019, Enhancing the efficiency of a dye-sensitized solar cell based on a metal oxide nanocomposite gel polymer electrolyte, ACS Appl. Mater. Interfaces, 11, 30185, 10.1021/acsami.9b07062 Arora, 2010, Review: Nanocomposites in food packaging, J. Food Sci., 75, R43, 10.1111/j.1750-3841.2009.01456.x Mihindukulasuriya, 2014, Nanotechnology development in food packaging: a review, Trends Food Sci. Technol., 40, 149, 10.1016/j.tifs.2014.09.009 Anand, 2012, Enhanced condensation on lubricant-impregnated nanotextured surfaces, ACS Nano, 6, 10122, 10.1021/nn303867y Sims, 2012, Plastic solar cells, Compr. Renew. Energy, 1, 439, 10.1016/B978-0-08-087872-0.00120-7 Solar Cells That Can Face almost Any Direction and Keep Themselves Clean. Available online: http: //m.phys.org/news/2015-12-solar-cells.html (accessed on 18 February 2016). “Nanocomposites: Properties and Applications,” The International Nanoscience Community, Posted by Nano on January 4, 2008 in Polymer Nanocomposite Group. Deborah D. L. Chung, Composite Materials: Functional Materials for Modern Technologies, Springer-Verlag London Ltd, UK, 2002. Yiu-Wing Mai and Zhong-Zhen Yu, Polymer nanocomposites, Woodhead Publishing Limited, Cambridge, UK, 2006. Thostenson, 2005, Nanocomposites in context, Compos. Sci. Technol., 65, 491, 10.1016/j.compscitech.2004.11.003 Paul, 2008, Polymer nanotechnology: Nanocomposites, Polymer, 49, 3187, 10.1016/j.polymer.2008.04.017 Winey, 2007, Polymer nanocomposites, MRS Bull., 32, 314, 10.1557/mrs2007.229 Jeffrey Jordon, Karl I. Jacob, Rina Tannenbaum, Mohammad A. Sharaf, IwonaJasiuk, Experimental trends in polymer nanocomposites- a review, Mater. Sci. Eng. A, 393 (2005) 1-11. In-Yup Jeon, Jong-BeomBaek, Nanocomposites derived from polymers and inorganic nanoparticles, Materials, 3 (2010) 3654-3674. Maron, 2018, Carbon fiber/epoxy composites: effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties, Polymer Bull., 75, 1619, 10.1007/s00289-017-2115-y Modesti, 2007, Influence of nanofillers on thermal insulating properties of polyurethane nanocomposites foams, Polymer Engineering & Science, 47, 1351, 10.1002/pen.20819 Vyas, 2018, Role of organic/inorganic salts and nanofillers in polymer nanocomposites: enhanced conduction, rheological, and thermal properties, J. Mater. Sci., 53, 4987, 10.1007/s10853-017-1912-x Le, 2016, Effect of nano-fillers on the strength reinforcement of novel hybrid polymer nanocomposites, Mater. Manufacturing Processes, 31, 1066, 10.1080/10426914.2015.1048365 Tang, 2012, High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers, Nano Lett., 12, 1152, 10.1021/nl202692y P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and technology, WILEY-VCH 2003, ISBN 3-527-30359-6. Althues, 2007, Functional inorganic nanofillers for transparent polymers, Chem. Society Rev., 36, 1454, 10.1039/b608177k Atif, 2016, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers, Beilstein J. Nanotechnol., 7, 1174, 10.3762/bjnano.7.109 Ciprari, 2006, Characterization of polymer nanocomposite interphase and its impact on mechanical properties, Macromolecules, 39, 6565, 10.1021/ma0602270 Miller, 2008 Sati N. Bhattacharya, Musa Rasim Kamal, Rahul K. Gupta, “Polymeric nanocomposites: theory and practice,” Hanser Gardner Publications, Inc., ISBN 978-1-56990-374-2. Rudin, 1999 Yuri. S. Lipatov, Polymer reinforcement, ChemTec. Publishing, ISBN 1-895198-08-9. Sanat K. Kumar and RamananKrishnamoorti; Annu. Rev. Chem. Biomol, Nanocomposites: structure, phase behavior, and properties, Annu. Rev. ChemBiomol. Eng., 2010, vol. 1, pp. 37–58. Knauert, 2007, The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength, J. Polymer Sci. Part B: Polymer Phys., 45, 1882, 10.1002/polb.21176 Pedro Henrique, Cury Camargo, Kester Gundappa, Satyanarayana, Fernando Wypych, “Nanocomposites: synthesis, structure, properties and new application opportunities,” Material Research, 12(1) (2009) 1-39. Parameswaranpillai. J., Hameed N. Kurian., Thomas Yu Yingfeng, Nanocomposite Materials, Taylor and Francis, 2016, USA. Joseph H. Koo, Polymer Nanocomposites: Processing, Characterization and Applications, McGraw- Hill, 2006, USA. “Characterization and failure analysis of plastics,” ASM International, Dec. 2003, ISBN 0-87170-789-6 Shetti, 2019, Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid, Anal. Chim. Acta, 1051, 58, 10.1016/j.aca.2018.11.041 Shetti, 2019, Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine, Appl. Surf. Sci., 496, 10.1016/j.apsusc.2019.143656 Shetti, 2019, Electrochemical behavior of flufenamic acid at amberlite XAD-4 resin and silver-doped titanium dioxide/amberlite XAD-4 resin modified carbon electrodes, Colloids Surf. B Biointerfaces, 177, 407, 10.1016/j.colsurfb.2019.02.022 Raghu, 2019, Role of conducting polymer and metal oxide-based hydrides for applications in ampereometric sensors and biosensors, Microchem. J., 147, 7, 10.1016/j.microc.2019.02.061 S.D. Bukkitgar, NP. Shetti, R.M. Kulkarni, S.B. Halbhavi, M. Wasim, M. Mylar, P.S. Durgi, SS. Chirmure Electrochemical oxidation of nimesulide in aqueous acid solutions based on TiO2 nanostructure modified electrode as a sensor, J. Electroanal. Chem. 778, (2016) 103-109. Tanahashi, 2010, Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers, Materials, 3, 1593, 10.3390/ma3031593 Feng Yang, YuchunOu, Zhongzhen YU, “Polyamide 6/Silica Nanocomposites Prepared by In Situ Polymerization,” State Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China, 1998. Alexandre, 2000, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng., 28, 1, 10.1016/S0927-796X(00)00012-7 R.J. Reddy, Preparation, Characterization and Properties of Injection Molded Graphene Nanocomposites, Master’s thesis, Mechanical Engineering, Wichita State University, Wichita, Kansas, USA, 2010. Sharma, 2012, Glass Fiber reinforced polymer-clay nanocomposites: processing, structure and hygrothermal effects on mechanical properties, Procedia Chemistry., 4, 39, 10.1016/j.proche.2012.06.006 Chow, 2007, Water absorption of epoxy/glass fiber/organomontmorillonite nanocomposites. eXPRESS, Polymer Lett., 1, 104, 10.3144/expresspolymlett.2007.18 Wetzel, 2006, Epoxynanocomposites – fracture and toughening mechanisms, Engineering Fracture Mechanics, 73, 2375, 10.1016/j.engfracmech.2006.05.018 Manoharan, 2014, Cryogenic mechanical properties of PP/MMT polymer nanocomposites, Indian J. Sci. Technol., 7, 16, 10.17485/ijst/2014/v7sp7.13 F. Aymerich, A.D. Via, M. Quaresimin, Energy absorption capability of nanomodified glass/epoxy laminates. 11th International Conference on the Mechanical Behaviour of Materials, Procedia Engineering; 2011. Chow, 2007, Water absorption of epoxy/glass fiber/organomontmorillonite nanocomposites, Express Polymer Lett., 1, 104, 10.3144/expresspolymlett.2007.18 Upadhyay, 2012, Manufacturing and characterisation of PMMA-Graphene Oxide (GO) nanocomposite sandwich films with electrospunnano-fibre core, J. Achievements Mater. Manufacturing Eng., 55, 835 Lattach, 2014, Iridium oxide−polymer nanocomposite electrode materials for water oxidation, ACS Appl. Mater. Interfaces, 6, 12852, 10.1021/am5027852 Reier, 2012, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials, Acs, Catalysis, 2, 1765 Park, 2012, Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective, Energy Environ. Sci., 5, 9331, 10.1039/c2ee22554a Cherevko, 2014, Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment, Electrochem. Commun., 48, 81, 10.1016/j.elecom.2014.08.027 Lee, 2018, Comparative study of catalytic activities among transition metal-doped IrO 2 nanoparticles, Scientific Reports, 8, 1, 10.1038/s41598-018-35116-w Mishra, 2019, Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review, Carbon, 149, 693, 10.1016/j.carbon.2019.04.104 Mehta, 2019, Band gap tuning and surface modification of carbon dots for sustainable environmental, remediation and photocatalytic hydrogen production–a review, J. Environ. Manage., 250, 10.1016/j.jenvman.2019.109486 Rao, 2019, Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review, J. Environ. Manage., 248, 10.1016/j.jenvman.2019.07.017 Reddy, 2019, A review on frontiers in plasmonic nano-photocatalysts for hydrogen production, Int. J. Hydrogen Energ., 44, 10453, 10.1016/j.ijhydene.2019.02.120 Juan, 2016, Polymer Supported Graphene-CdS Composite Catalyst with Enhanced Photocatalytic Hydrogen Production from Water Splitting under Visible Light, Chemical Engineering Journal, 283, 816, 10.1016/j.cej.2015.08.018 T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets and D. GNocera,Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev., 110 (2010) 6474–6502. Cao, 2015, Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance, RSC Adv., 5, 34566, 10.1039/C5RA00830A Mishra, 2019, Carbon cloth-based hybrid materials as flexible electrochemical supercapacitors, ChemElectroChem, 6, 5771, 10.1002/celc.201901122 Shetti, 2019, Nanostructured organic and inorganic materials for Li-ion batteries: a review, Mat. Sci. Semicon. Proc., 104, 10.1016/j.mssp.2019.104684 Mishra, 2018, Electrode materials for lithium-ion batteries, Mater. Sci. Energy Technol., 1, 182 A. Mishra, N.P. Shetti, S. Basu, K.R. Reddy, T.M. Aminabhavi, Recent developments in ionic liquid-based electrolytes for energy storage supercapacitors and rechargeable batteries, Green Sustainable Process for Chemical and Environmental Engineering and Science, Elsevier, (2020) 199-221. Wang, 2015, Electrocatalysis in fuel cells, J. Electrochem. Soc., 162, F755, 10.1149/2.0751507jes Manthiram, 2008, Nanostructured electrode materials for electrochemical energy storage and conversion, Energy Environ. Sci., 1, 621, 10.1039/b811802g Ding, 2014, A novel material Li2NiFe2O4: Preparation and performance as anode of lithium ion battery, Electrochim. Acta, 146, 585, 10.1016/j.electacta.2014.08.141 Etacheri, 2011, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b Mathew, 2014, Dyesensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem.., 6, 242, 10.1038/nchem.1861 Brown, 2014, Progress in flexible dye solar cell materials, processes and devices, J. Mater. Chem., A, 2, 10788, 10.1039/C4TA00902A Kalowekamo, 2009, Estimating the manufacturing cost of purely organic solar cells, Sol Energy, 83, 1224, 10.1016/j.solener.2009.02.003 M.J. de Wild-Scholten, A.C. Veltkamp, E.S. Energy, Environmental life cycle analysis of dye sensitized solar devices; status and outlook, In: 22nd European Photovoltaic Solar Energy Conference, Milan; (2007) 3–7. YY.H. Lin, Y.C. Wu, H.C. You, P.H. Chen, Y.H. Tsai, B.Y. Lai, Ultra-low temperature flexible dye-sensitized solar cell. 2014 international symposium on computer, consumer and control (IS3C), (2014) 470–3.