Recent trends in biochar production methods and its application as a soil health conditioner: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gabhane J, Tripathi A, Athar S, William SPMP, Vaidya AN, Wate SR (2016) Assessment of bioenergy potential of agricultural wastes: a case study cum template. J Biofuels Bioenergy 2:122. https://doi.org/10.5958/2454-8618.2016.00011.0
Patle AV, Prince M, Williams SP, Gabhane J, Dhar H, Nagarnaik P (2014) Mircobial assisted rapid composting of agriculture residues. Int J Sci Eng Res 5:1097–1099
Villaseñor J, Rodríguez L, Fernández FJ (2011) Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour Technol 102:1447–1454. https://doi.org/10.1016/j.biortech.2010.09.085
Raut M, Princewilliam S, Bhattacharyya J, Chakrabarti T, Devotta S (2008) Microbial dynamics and enzyme activities during rapid composting of municipal solid waste—a compost maturity analysis perspective. Bioresour Technol 99:6512–6519. https://doi.org/10.1016/j.biortech.2007.11.030
Gabhane J, William SP, Bidyadhar R, Bhilawe P, Anand D, Vaidya AN, Wate SR (2012) Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour Technol 114:382–388. https://doi.org/10.1016/j.biortech.2012.02.040
Roberts DA, Cole AJ, Paul NA, de Nys R (2015) Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass. J Environ Manage 161:173–180. https://doi.org/10.1016/j.jenvman.2015.07.002
Kelly CN, Peltz CD, Stanton M, Rutherford DW, Rostad CE (2014) Biochar application to hardrock mine tailings: soil quality, microbial activity, and toxic element sorption. Appl Geochem 43:35–48. https://doi.org/10.1016/J.APGEOCHEM.2014.02.003
Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. https://doi.org/10.1007/s11104-009-0050-x
Guan G, Kaewpanha M, Hao X, Abudula A (2016) Catalytic steam reforming of biomass tar: prospects and challenges. Renew Sustain Energy Rev 58:450–461. https://doi.org/10.1016/J.RSER.2015.12.316
Turner J, Sverdrup G, Mann MK, Maness P-C, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32:379–407. https://doi.org/10.1002/er.1372
Solomon D, Lehmann J, Thies J, Schäfer T, Liang B, Kinyangi J, Neves E, Petersen J, Luizão F, Skjemstad J (2007) Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochim Cosmochim Acta 71:2285–2298. https://doi.org/10.1016/j.gca.2007.02.014
Ogawa M, Okimori Y (2010) Pioneering works in biochar research, Japan. Aust J Soil Res 10:1–12. https://doi.org/10.1071/SR10006
Agegnehu G, Bass AM, Nelson PN, Muirhead B, Wright G, Bird MI (2015) Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric Ecosyst Environ 213:72–85. https://doi.org/10.1016/J.AGEE.2015.07.027
Matuštik J, Hnatkova T, Koči V (2020) Life cycle assessment of biochar-to-soil systems: a review. J Clean Prod 259:120998. https://doi.org/10.1016/j.jclepro.2020.120998
Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Verchot L, Recha JW, Pell AN (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11:726–739. https://doi.org/10.1007/s10021-008-9154-z
Graf ER, Valakh V, Wright CM, Wu C, Liu Z, Zhang YQ, DiAntonio A (2012) RIM promotes calcium channel accumulation at active zones of the drosophila neuromuscular junction. J Neurosci 32:16586–16596. https://doi.org/10.1523/JNEUROSCI.0965-12.2012
Meschewski E, Holm N, Sharma BK, Spokas K, Minalt N, Kelly JJ (2019) Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth. Chemosphere 228:565–576. https://doi.org/10.1016/j.chemosphere.2019.04.031
Bartoli M, Giorcelli M, Jagdale P, Rovere M, Tagliaferro A (2020) A review of non-soil biochar applications. Materials (Basel) 13:261. https://doi.org/10.3390/ma13020261
Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481. https://doi.org/10.1016/J.RSER.2015.10.122
Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42:2311–2320. https://doi.org/10.1016/J.BUILDENV.2006.04.015
Mtui GYS (2009) Recent advances in pretreatment of lignocellulosic wastes and production of value added products. African J Biotechnol 8:1398–1415
Coughlan MP (1985) The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol Genet Eng Rev 3:39–110. https://doi.org/10.1080/02648725.1985.10647809
Harmsen P, Huijgen W, Lopez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food Biobased Res 1–49
Patil PD, Yadav GD (2019) Exploring the untapped potential of solar pretreatment for deconstruction of recalcitrant Kraft lignin in fungal biotransformation. Clean Technol Environ Policy 21:579–590. https://doi.org/10.1007/s10098-018-1656-6
Balan V, Sousa LdaC, Chundawat SPS, Marshall D, Sharma LN, Chambliss CK, Dale BE (2009) Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol Prog 25:365–375. https://doi.org/10.1002/btpr.160
Erdtman H (1972) Lignins: occurrence, formation, structure and reactions, Sarkanen KV, Ludwig CH (eds.), John Wiley & Sons, Inc., New York, 1971. 916 pp. $35.00. J Polym Sci Part B Polym Lett 10:228–230. https://doi.org/10.1002/pol.1972.110100315
Gabhane J, Vaidya AN (2019) Efficiency of nutrient based compost activator on composting of green biomass: effect on physico-chemical, biological parameter and maturity of compost. Int J Curr Eng Sci Res 6:321–331
Liao N, Li Q, Zhang W, Zhou G, Ma L, Min W, Ye J, Hou Z (2016) Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. Eur J Soil Biol 72:27–34. https://doi.org/10.1016/J.EJSOBI.2015.12.008
Huang D, Liu L, Zeng G, Xu P, Huang C, Deng L, Wang R, Wan J (2017) The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 174:545–553. https://doi.org/10.1016/j.chemosphere.2017.01.130
Jeong CY, Dodla SK, Wang JJ (2016) Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Chemosphere 142:4–13. https://doi.org/10.1016/J.CHEMOSPHERE.2015.05.084
Yang X, Meng J, Lan Y, Chen W, Yang T, Yuan J, Liu S, Han J (2017) Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric Ecosyst Environ 240:24–31. https://doi.org/10.1016/J.AGEE.2017.02.001
Intani K, Latif S, Kabir AKMR, Müller J (2016) Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresour Technol 218:541–551. https://doi.org/10.1016/J.BIORTECH.2016.06.114
Ouyang W, Zhao X, Tysklind M, Hao F, Wang F (2015) Optimisation of corn straw biochar treatment with catalytic pyrolysis in intensive agricultural area. Ecol Eng 84:278–286. https://doi.org/10.1016/J.ECOLENG.2015.09.003
Srinivasan P, Sarmah AK, Smernik R, Das O, Farid M, Gao W (2015) A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci Total Environ 512–513:495–505. https://doi.org/10.1016/J.SCITOTENV.2015.01.068
Jegajeevagan K, Mabilde L, Gebremikael MT, Ameloot N, De Neve S, Leinweber P, Sleutel S (2016) Artisanal and controlled pyrolysis-based biochars differ in biochemical composition, thermal recalcitrance, and biodegradability in soil. Biomass Bioenerg 84:1–11. https://doi.org/10.1016/J.BIOMBIOE.2015.10.025
Özçimen D, Ersoy-Meriçboyu A (2010) Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy. 35:1319–1324. https://doi.org/10.1016/J.RENENE.2009.11.042
Bhange VP, William SP, Sharma A, Gabhane J, Vaidya AN, Wate SR (2015) Pretreatment of garden biomass using Fenton’s reagent: influence of Fe(2 +) and H2O2 concentrations on lignocellulose degradation. J Environ Heal Sci Eng 13:12. https://doi.org/10.1186/s40201-015-0167-1
Jha MK, Sondhi AK, Pansare M (2003) Solid waste management—a case study. Indian J Environ Prot 23:1153–1160
Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities—a review. Waste Manag 28:459–467. https://doi.org/10.1016/J.WASMAN.2007.02.008
Devasahayam S, Dowling K, Mahapatra MK (2016) Sustainability in the mineral and energy sectors. CRC Press, Cambridge
Agarwal M, Tardio J, Mohan SV (2015) Pyrolysis biochar from cellulosic municipal solid waste as adsorbent for azo dye removal: equilibrium isotherms and kinetics analysis. Int J Environ Sci Dev 6:67–72. https://doi.org/10.7763/IJESD.2015.V6.563
Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629. https://doi.org/10.1016/J.BIORTECH.2014.06.103
Ateş F, Miskolczi N, Borsodi N (2013) Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties. Bioresour Technol 133:443–454. https://doi.org/10.1016/J.BIORTECH.2013.01.112
Bernardo M, Lapa N, Gonçalves M, Mendes B, Pinto F, Fonseca I, Lopes H (2012) Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures. J Hazard Mater 219–220:196–202. https://doi.org/10.1016/J.JHAZMAT.2012.03.077
Cao X, Ma L, Gao B, Harris W (2009) Dairy-Manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. https://doi.org/10.1021/es803092k
Meng J, Wang L, Liu X, Wu J, Brookes PC, Xu J (2013) Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresour Technol 142:641–646. https://doi.org/10.1016/J.BIORTECH.2013.05.086
Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80:935–940. https://doi.org/10.1016/J.CHEMOSPHERE.2010.05.020
Jayawardhana Y, Kumarathilaka P, Herath I, Vithanage M (2016) Municipal solid waste biochar for prevention of pollution from landfill leachate. Environ Mater Waste. https://doi.org/10.1016/B978-0-12-803837-6.00006-8
Nandy B, Sharma G, Garg S, Kumari S, George T, Sunanda Y, Sinha B (2015) Recovery of consumer waste in India—a mass flow analysis for paper, plastic and glass and the contribution of households and the informal sector. Resour Conserv Recycl 101:167–181. https://doi.org/10.1016/J.RESCONREC.2015.05.012
Food and Agriculture Organization of the United Nations (2010) Global forest resources assessment 2010 : main report. Food and Agriculture Organization of the United Nations
Asia-Pacific forestry sector outlook study II india forestry outlook study by the ministry of environment and forests government of india food and agriculture organization of the united nations regional office for asia and the pacific. (2009)
Lai WY, Lai C-M, Ke GR, Chung R-S, Chen CT, Cheng C-H, Pai CW, Chen SY, Chen CC (2013) The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J Taiwan Inst Chem Eng 44:1039–1044. https://doi.org/10.1016/J.JTICE.2013.06.028
Dong T, Gao D, Miao C, Yu X, Degan C, Garcia-Pérez M, Rasco B, Sablani SS, Chen S (2015) Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Convers Manag 105:1389–1396. https://doi.org/10.1016/J.ENCONMAN.2015.06.072
Hu Q, Yang H, Yao D, Zhu D, Wang X, Shao J, Chen H (2016) The densification of bio-char: effect of pyrolysis temperature on the qualities of pellets. Bioresour Technol 200:521–527. https://doi.org/10.1016/J.BIORTECH.2015.10.077
Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar—production and properties. Bioresour Technol 102:1886–1891. https://doi.org/10.1016/J.BIORTECH.2010.07.106
Roberts DA, de Nys R (2016) The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva. J Environ Manage 169:253–260. https://doi.org/10.1016/j.jenvman.2015.12.023
Nautiyal P, Subramanian KA, Dastidar MG (2016) Adsorptive removal of dye using biochar derived from residual algae after in situ transesterification: alternate use of waste of biodiesel industry. J Environ Manage 182:187–197. https://doi.org/10.1016/j.jenvman.2016.07.063
Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenerg 56:600–606. https://doi.org/10.1016/J.BIOMBIOE.2013.05.035
Shen B, Chen J, Yue S, Li G (2015) A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR. Fuel 156:47–53. https://doi.org/10.1016/J.FUEL.2015.04.027
Wang P, Yu H, Zhan S, Wang S (2011) Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresour Technol 102:4179–4183. https://doi.org/10.1016/J.BIORTECH.2010.12.073
Moralı U, Şensöz S (2015) Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char. Fuel 150:672–678. https://doi.org/10.1016/J.FUEL.2015.02.095
Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133. https://doi.org/10.1016/J.CHEMOSPHERE.2009.02.004
Zheng W, Sharma BK, Rajagopalan N (2010) Using biochar as a soil amendment for sustainable agriculture 1–36
Moussavi G, Khosravi R (2012) Preparation and characterization of a biochar from pistachio hull biomass and its catalytic potential for ozonation of water recalcitrant contaminants. Bioresour Technol 119:66–71. https://doi.org/10.1016/J.BIORTECH.2012.05.101
Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48:516. https://doi.org/10.1071/SR10058
Yuan H, Lu T, Wang Y, Chen Y, Lei T (2016) Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients. Geoderma 267:17–23. https://doi.org/10.1016/J.GEODERMA.2015.12.020
Méndez A, Paz-Ferreiro J, Gil E, Gascó G (2015) The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci Hortic (Amsterdam) 193:225–230. https://doi.org/10.1016/J.SCIENTA.2015.07.032
Jin Y, Liang X, He M, Liu Y, Tian G, Shi J (2016) Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere 142:128–135. https://doi.org/10.1016/J.CHEMOSPHERE.2015.07.015
Liu Z, Han G (2015) Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 158:159–165. https://doi.org/10.1016/J.FUEL.2015.05.032
Wrobel-Tobiszewska A, Boersma M, Sargison J, Adams P, Jarick S (2015) An economic analysis of biochar production using residues from Eucalypt plantations. Biomass Bioenerg 81:177–182. https://doi.org/10.1016/J.BIOMBIOE.2015.06.015
Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA (2013) Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72. https://doi.org/10.1016/J.ECOLENG.2013.02.011
Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc Lond B Biol Sci. 362(1478):187–196. https://doi.org/10.1098/rstb.2006.1978
Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41. https://doi.org/10.1007/s001140000193
Thines KR, Abdullah EC, Mubarak NM, Ruthiraan M (2017) Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renew Sustain Energy Rev 67:257–276. https://doi.org/10.1016/J.RSER.2016.09.057
Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28. https://doi.org/10.1016/J.APGEOG.2011.09.008
Emrich W (1985) Commission of the European Communities, L. (Luxembourg). D.-G.I.M. and I. eng: Handbook of charcoal making: the traditional and industrial methods, http://agris.fao.org/agris-search/search.do?recordID=XF2015046878
Reilly J (1925) The technology of wood distillation: with special reference to the methods of obtaining the intermediate and finished products from the primary distillate. Nature 116:779–780. https://doi.org/10.1038/116779a0
Basu P (2010) Biomass gasification and pyrolysis: practical design and theory. Academic Press, Burlington
Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energ Fuel. https://doi.org/10.1021/EF034067U
Suárez-Abelenda M, Kaal J, McBeath AV (2017) Translating analytical pyrolysis fingerprints to Thermal Stability Indices (TSI) to improve biochar characterization by pyrolysis-GC-MS. Biomass Bioenerg 98:306–320. https://doi.org/10.1016/J.BIOMBIOE.2017.01.021
Li J, Dai J, Liu G, Zhang H, Gao Z, Fu J, He Y, Huang Y (2016) Biochar from microwave pyrolysis of biomass: a review. Biomass Bioenerg 94:228–244. https://doi.org/10.1016/j.biombioe.2016.09.010
Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol 45:939–969. https://doi.org/10.1080/10643389.2014.924180
Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouche JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 2012:1–18. https://doi.org/10.1155/2012/542426
McBeath AV, Smernik RJ, Krull ES, Lehmann J (2014) The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass Bioenerg 60:121–129. https://doi.org/10.1016/J.BIOMBIOE.2013.11.002
Dai L, Fan L, Liu Y, Ruan R, Wang Y, Zhou Y, Zhao Y, Yu Z (2017) Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresour Technol 225:1–8. https://doi.org/10.1016/J.BIORTECH.2016.11.017
Huang YF, Chiueh P-T, Kuan WH, Lo SL (2016) Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy. 100:137–144. https://doi.org/10.1016/J.ENERGY.2016.01.088
Liu S, Xie Q, Zhang B, Cheng Y, Liu Y, Chen P, Ruan R (2016) Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour Technol 204:164–170. https://doi.org/10.1016/J.BIORTECH.2015.12.085
Karunanayake AG, Todd OA, Crowley ML, Ricchetti LB, Pittman CU, Anderson R, Mlsna TE (2017) Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir. Chem Eng J 319:75–88. https://doi.org/10.1016/J.CEJ.2017.02.116
Essandoh M, Kunwar B, Pittman CU, Mohan D, Mlsna T (2015) Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem Eng J 265:219–227. https://doi.org/10.1016/j.cej.2014.12.006
Laird DA, Novak JM, Collins HP, Ippolito JA, Karlen DL, Lentz RD, Sistani KR, Spokas K, Van Pelt RS (2017) Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma 289:46–53. https://doi.org/10.1016/J.GEODERMA.2016.11.025
Al-Rahbi AS, Williams PT (2017) Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl Energy 190:501–509. https://doi.org/10.1016/J.APENERGY.2016.12.099
González JF, Román S, Bragado D, Calderón M (2008) Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production. Fuel Process Technol 89:764–772. https://doi.org/10.1016/J.FUPROC.2008.01.011
Shen Y, Zhao P, Shao Q, Takahashi F, Yoshikawa K (2015) In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier. Appl Energy 160:808–819. https://doi.org/10.1016/j.apenergy.2014.10.074
Luo S, Xiao B, Hu Z, Liu S, Guo X, He M (2009) Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: influence of temperature and steam on gasification performance. Int J Hydrogen Energy 34:2191–2194. https://doi.org/10.1016/J.IJHYDENE.2008.12.075
Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. https://doi.org/10.1021/EF0502397
Sattar A, Leeke GA, Hornung A, Wood J (2014) Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. Biomass Bioenerg 69:276–286. https://doi.org/10.1016/J.BIOMBIOE.2014.07.025
Yan F, Luo S, Hu Z, Xiao B, Cheng G (2010) Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition. Bioresour Technol 101:5633–5637. https://doi.org/10.1016/J.BIORTECH.2010.02.025
Bourgeois JP, Doat J (1984) Torrefied wood from temperate and tropical species. Advantages and prospects. Bioenergy 84. In: Proceeding of conference 15–21 June 1984, Goteborg, Sweden. Vol. III. Biomass Convers, pp 153–159
Pentananunt R, Rahman ANMM, Bhattacharya SC (1990) Upgrading of biomass by means of torrefaction. Energy. 15:1175–1179. https://doi.org/10.1016/0360-5442(90)90109-F
Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod Biorefining 5:683–707. https://doi.org/10.1002/bbb.324
Almeida G, Brito JO, Perré P (2010) Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Bioresour Technol 101:9778–9784. https://doi.org/10.1016/J.BIORTECH.2010.07.026
Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood. J Anal Appl Pyrolysis 77:35–40. https://doi.org/10.1016/j.jaap.2006.01.001
Huang Y-F, Cheng P-H, Chiueh P-T, Lo S-L (2017) Leucaena biochar produced by microwave torrefaction: fuel properties and energy efficiency. Appl Energy 204:1018–1025. https://doi.org/10.1016/J.APENERGY.2017.03.007
Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain cladosporium cladosporioides Hu-01. PLoS ONE 7:1–12. https://doi.org/10.1371/journal.pone.0047205
Chen WH, Kuo PC (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy. 35:2580–2586. https://doi.org/10.1016/J.ENERGY.2010.02.054
Li L, Rowbotham JS, Christopher Greenwell H, Dyer PW (2013) An introduction to pyrolysis and catalytic pyrolysis: versatile techniques for biomass conversion. In: New and future developments in catalysis, pp 173–208. Elsevier
Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482. https://doi.org/10.1080/00908310252889979
Tripathi M, Sahu JN, Ganesan P, Monash P, Dey TK (2015) Effect of microwave frequency on dielectric properties of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. J Anal Appl Pyrolysis 112:306–312. https://doi.org/10.1016/J.JAAP.2015.01.007
Carrier M, Hugo T, Gorgens J, Knoetze H (2011) Comparison of slow and vacuum pyrolysis of sugar cane bagasse. J Anal Appl Pyrolysis 90:18–26. https://doi.org/10.1016/j.jaap.2010.10.001
Roy C, Chaala A (2001) Vacuum pyrolysis of automobile shredder residues. Resour Conserv Recycl 32:1–27. https://doi.org/10.1016/S0921-3449(00)00088-4
Uras-Postma Ü, Carrier M, Knoetze J (2014) (Hansie): vacuum pyrolysis of agricultural wastes and adsorptive criteria description of biochars governed by the presence of oxides. J Anal Appl Pyrolysis 107:123–132. https://doi.org/10.1016/J.JAAP.2014.02.012
Uras Ü, Carrier M, Hardie AG, Knoetze JH (2012) Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. J Anal Appl Pyrolysis 98:207–213. https://doi.org/10.1016/J.JAAP.2012.08.007
Titirici M-M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787. https://doi.org/10.1039/b616045j
Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2:71–106. https://doi.org/10.4155/bfs.10.81
Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici M-M (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828. https://doi.org/10.1002/adma.200902812
Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy. 58:376–383. https://doi.org/10.1016/J.ENERGY.2013.06.023
Lynam JG, Coronella CJ, Yan W, Reza MT, Vasquez VR (2011) Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 102:6192–6199. https://doi.org/10.1016/j.biortech.2011.02.035
Yang W, Shimanouchi T, Kimura Y (2015) Characterization of the residue and liquid products produced from husks of nuts from Carya cathayensis sarg by hydrothermal carbonization. ACS Sustain Chem Eng 3:591–598. https://doi.org/10.1021/acssuschemeng.5b00103
Reza MT, Lynam JG, Vasquez VR, Coronella CJ (2012) Pelletization of biochar from hydrothermally carbonized wood. Environ Prog. Sustain Energy 31:225–234. https://doi.org/10.1002/ep.11615
Reza MT, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ (2014) Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Convers Biorefinery 4:311–321. https://doi.org/10.1007/s13399-014-0115-9
Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. https://doi.org/10.1016/J.RSER.2015.01.050
Gabhane J, Prince William SPM, Vaidya AN, Mahapatra K, Chakrabarti T (2011) Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenergy 35:96–102. https://doi.org/10.1016/J.BIOMBIOE.2010.08.026
Intanakul P, Krairiksh M, Kitchaiya P (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol 23:217–225. https://doi.org/10.1081/WCT-120021926
Patil PD, Yadav GD (2018) Application of microwave assisted three phase partitioning method for purification of laccase from Trametes hirsuta. Process Biochem 65:220–227. https://doi.org/10.1016/j.procbio.2017.10.006
Nihon Hakkō Kōgakkai J, Nihon Seibutsu Kōgakkai F, Koshijima T, (Kyoto Univ., U. (Japan). WRI (1989) Enhancement of enzymatic susceptibility of lignocellulosic wastes [sugar cane bagasse, rice straw and rice hulls] by microwave irradiation [1984]. Society of Fermentation Technology, Japan
Warren Communications News (Firm), E. (Kyoto U. (Japan). C. of A., Okamura, K.: Influence of a steam explosion and microwave irradiation on the enzymatic hydrolysis of a coniferous wood [1989]. Warren Communications News (1989)
Arafat Hossain M, Ganesan P, Jewaratnam J, Chinna K (2017) Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production. Energy Convers Manag 133:349–362. https://doi.org/10.1016/J.ENCONMAN.2016.10.046
Menéndez JA, Domı́nguez A, Inguanzo M, Pis JJ (2004) Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J Anal Appl Pyrolysis 7:657–667. https://doi.org/10.1016/J.JAAP.2003.09.003
Huang YF, Chiueh P, Te, Lo SL (2019) CO2 adsorption on biochar from co-torrefaction of sewage sludge and leucaena wood using microwave heating. In: Energy Procedia, pp 4435–4440. Elsevier Ltd
Jung K-W, Hwang M-J, Jeong T-U, Ahn K-H (2015) A novel approach for preparation of modified-biochar derived from marine macroalgae: dual purpose electro-modification for improvement of surface area and metal impregnation. Bioresour Technol 191:342–345. https://doi.org/10.1016/j.biortech.2015.05.052
Fang C, Zhang T, Li P, Jiang R, Wang Y (2014) Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. Int J Environ Res Public Health 11:9217–9237. https://doi.org/10.3390/ijerph110909217
Hu X, Ding Z, Zimmerman AR, Wang S, Gao B (2015) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216. https://doi.org/10.1016/J.WATRES.2014.10.009
Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462. https://doi.org/10.1016/J.BIORTECH.2012.11.132
Zhang M, Gao B (2013) Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem Eng J 226:286–292. https://doi.org/10.1016/J.CEJ.2013.04.077
Wan Z, Sun Y, Tsang DC, Hou D, Cao X, Zhang S, Gao B, Ok YS (2020) Sustainable remediation with electroactive biochar system: mechanisms and perspectives. Green Chem 22:2688–2711. https://doi.org/10.1039/d0gc00717j
Zhou Z, Liu Y, Liu S, Liu H, Zeng G, Tan X, Yang C, Ding Y, Yan Z, Cai X (2017) Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chem Eng J 314:223–231. https://doi.org/10.1016/J.CEJ.2016.12.113
Peng X, Luan Z, Di Z, Zhang Z, Zhu C (2005) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon N. Y. 43:880–883. https://doi.org/10.1016/j.carbon.2004.11.009
Mubarak NM, Alicia RF, Abdullah EC, Sahu JN, Haslija ABA, Tan J (2013) Statistical optimization and kinetic studies on removal of Zn2 + using functionalized carbon nanotubes and magnetic biochar. J Environ Chem Eng 1:486–495. https://doi.org/10.1016/J.JECE.2013.06.011
Walworth J (2013) Nitrogen in Soil and the environment
Joseph S, Graber E, Chia C, Munroe P, Donne S, Thomas T, Nielsen S, Marjo C, Rutlidge H, Pan G, Li L, Taylor P, Rawal A, Hook J (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 4:323–343. https://doi.org/10.4155/cmt.13.23
Blackwell P, Krull E, Butler G, Herbert A, Solaiman Z (2010) Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Soil Res. 48:531. https://doi.org/10.1071/SR10014
Clough T, Condron L, Kammann C, Müller C, Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy. 3:275–293. https://doi.org/10.3390/agronomy3020275
Bai SH, Reverchon F, Xu C-Y, Xu Z, Blumfield TJ, Zhao H, Van Zwieten L, Wallace HM (2015) Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240. https://doi.org/10.1016/J.SOILBIO.2015.08.007
Hosseini Bai S, Xu C-Y, Xu Z, Blumfield TJ, Zhao H, Wallace H, Reverchon F, Van Zwieten L (2015) Soil and foliar nutrient and nitrogen isotope composition (δ15 N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ Sci Pollut Res 22:3803–3809. https://doi.org/10.1007/s11356-014-3649-2
Xu N, Tan G, Wang H, Gai X (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 74:1–8. https://doi.org/10.1016/J.EJSOBI.2016.02.004
Amonette JE, Joseph S, Joseph S (2012) Characteristics of biochar: microchemical properties, pp 65–84. https://doi.org/10.4324/9781849770552-10
Montes-Morán MA, Suárez D, Menéndez JA, Fuente E (2004) On the nature of basic sites on carbon surfaces: an overview. Carbon N. Y. 42:1219–1225. https://doi.org/10.1016/J.CARBON.2004.01.023
Biochar for Environmental Management: An Introduction
Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan
Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51: 2061–2069. https://doi.org/10.13031/2013.25409
Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143. https://doi.org/10.1016/B978-0-12-385538-1.00003-2
Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 9:e113888. https://doi.org/10.1371/journal.pone.0113888
Harvey OR, Herbert BE, Kuo L-J, Louchouarn P (2012) Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars. Environ Sci Technol 46:10641–10650. https://doi.org/10.1021/es302971d
Das J, Patra BS, Baliarsingh N, Parida KM (2006) Adsorption of phosphate by layered double hydroxides in aqueous solutions. Appl Clay Sci 32:252–260. https://doi.org/10.1016/J.CLAY.2006.02.005
Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202. https://doi.org/10.1016/J.BIORTECH.2014.01.120
Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255. https://doi.org/10.1016/J.GEODERMA.2011.04.021
Zheng H, Wang Z, Deng X, Herbert S, Xing B (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39. https://doi.org/10.1016/J.GEODERMA.2013.04.018
Iqbal H, Garcia-Perez M, Flury M (2015) Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Sci Total Environ 521–522:37–45. https://doi.org/10.1016/J.SCITOTENV.2015.03.060
Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442. https://doi.org/10.1016/J.GEODERMA.2010.05.012
Angst TE, Sohi SP (2013) Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy. 5:221–226. https://doi.org/10.1111/gcbb.12023
Lou Z, Sun Y, Bian S, Ali Baig S, Hu B, Xu X (2017) Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere 169:23–31. https://doi.org/10.1016/j.chemosphere.2016.11.044
Janus A, Pelfrêne A, Heymans S, Deboffe C, Douay F, Waterlot C (2015) Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. J Environ Manage 162:275–289. https://doi.org/10.1016/J.JENVMAN.2015.07.056
Liu X (2014) Sustainable biochar effects for low carbon crop production: a 5-crop season field experiment on a low fertility soil from Central China. Am. Geophys. Union, Fall Meet. 2014, Abstr. id. B41A-0002
Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 45:629. https://doi.org/10.1071/SR07109
Mukherjee A, Lal R, Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy. 3:313–339. https://doi.org/10.3390/agronomy3020313
Berglund LM, DeLuca TH, Zackrisson O (2004) Activated carbon amendments to soil alters nitrification rates in Scots pine forests. Soil Biol Biochem 36:2067–2073. https://doi.org/10.1016/J.SOILBIO.2004.06.005
Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manage 231:86–93. https://doi.org/10.1016/J.FORECO.2006.05.004
Thies JE, Rillig MC, Graber ER, Rillig MC, Graber ER (2015) Biochar effects on the abundance, activity and diversity of the soil biota, pp 359–422. https://doi.org/10.4324/9780203762264-20
Quilliam RS, DeLuca TH, Jones DL (2013) Biochar application reduces nodulation but increases nitrogenase activity in clover. Plant Soil 366:83–92. https://doi.org/10.1007/s11104-012-1411-4
Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708. https://doi.org/10.1007/s00374-006-0152-z
Fischer D, Glaser B (2012) Synergisms between compost and biochar for sustainable soil amelioration. In: Management of Organic Waste. InTech
Lehmann J, Pereira da Silva Jr J, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357. https://doi.org/10.1023/A:1022833116184
Liang P-W, Liao C-Y, Chueh C-C, Zuo F, Williams ST, Xin X-K, Lin J, Jen AK-Y (2014) Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater 26:3748–3754. https://doi.org/10.1002/adma.201400231
Ippolito JA, Stromberger ME, Lentz RD, Dungan RS (2016) Hardwood biochar and manure co-application to a calcareous soil. Chemosphere 142:84–91. https://doi.org/10.1016/j.chemosphere.2015.05.039
Chen J, Liu X, Zheng J, Zhang B, Lu H, Chi Z, Pan G, Li L, Zheng J, Zhang X, Wang J, Yu X (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44. https://doi.org/10.1016/J.APSOIL.2013.05.003
Deng L, Zeng G, Fan C, Lu L, Chen X, Chen M, Wu H, He X, He Y (2015) Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl Microbiol Biotechnol 99:8259–8269. https://doi.org/10.1007/s00253-015-6662-6
Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. https://doi.org/10.1128/AEM.02775-08
Elzobair KA, Stromberger ME, Ippolito JA, Lentz RD (2016) Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere 142:145–152. https://doi.org/10.1016/J.CHEMOSPHERE.2015.06.044
Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46:450–456. https://doi.org/10.1016/J.APSOIL.2010.09.002
Thies JE, Rillig MC, Rillig MC (2012) Characteristics of biochar: Biol Propert, pp 117–138. https://doi.org/10.4324/9781849770552-13
Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523. https://doi.org/10.1111/gcbb.12266
Case SDC, McNamara NP, Reay DS, Stott AW, Grant HK, Whitaker J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185. https://doi.org/10.1016/J.SOILBIO.2014.11.012
Nelissen V, Rütting T, Huygens D, Ruysschaert G, Boeckx P (2015) Temporal evolution of biochar’s impact on soil nitrogen processes—a 15 N tracing study. GCB Bioenergy. 7:635–645. https://doi.org/10.1111/gcbb.12156
Wang N, Chang Z-Z, Xue X-M, Yu J-G, Shi X-X, Ma LQ, Li H-B (2017) Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci Total Environ 581–582:689–696. https://doi.org/10.1016/j.scitotenv.2016.12.181
Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88. https://doi.org/10.1016/J.SOILBIO.2011.11.016
Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, Behrens S (2014) Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Lett 1:339–344. https://doi.org/10.1021/ez5002209
Gabhane J, Kumar S, Sarma AK (2020) Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw. Renew Energy 154:1304–1313. https://doi.org/10.1016/j.renene.2020.03.035
Ameloot N, Graber ER, Verheijen FGA, De Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64:379–390. https://doi.org/10.1111/ejss.12064
Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387. https://doi.org/10.1890/1540-9295(2007)5%5b381:BITB%5d2.0.CO;2
Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD (2014) Rhizosphere stoichiometry: are C: n: P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytol 201:505–517. https://doi.org/10.1111/nph.12531
Patil PD, Yadav GD (2018) Comparative studies of white-rot fungal strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for effective degradation and bioconversion of ferulic acid. ACS Omega. 3:14858–14868. https://doi.org/10.1021/acsomega.8b01614
Witter E, Mårtensson AM, Garcia FV (1993) Size of the soil microbial biomass in a long-term field experiment as affected by different n-fertilizers and organic manures. Soil Biol Biochem 25:659–669. https://doi.org/10.1016/0038-0717(93)90105-K
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/J.SOILBIO.2012.11.009
Bhaduri D, Saha A, Desai D, Meena HN (2016) Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 148:86–98. https://doi.org/10.1016/J.CHEMOSPHERE.2015.12.130
Foster EJ, Hansen N, Wallenstein M, Cotrufo MF (2016) Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric Ecosyst Environ 233:404–414. https://doi.org/10.1016/J.AGEE.2016.09.029
Bailey VL, Fansler SJ, Smith JL, Bolton H (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43:296–301. https://doi.org/10.1016/J.SOILBIO.2010.10.014
Killham K (1985) A physiological determination of the impact of environmental stress on the activity of microbial biomass. Environ Pollut Ser A Ecol Biol 38:283–294. https://doi.org/10.1016/0143-1471(85)90133-3
Chintala R, Schumacher TE, Kumar S, Malo DD, Rice JA, Bleakley B, Chilom G, Clay DE, Julson JL, Papiernik SK, Gu ZR (2014) Molecular characterization of biochars and their influence on microbiological properties of soil. J Hazard Mater 279:244–256. https://doi.org/10.1016/J.JHAZMAT.2014.06.074
Elad Y, David DR, Harel YM, Borenshtein M, Kalifa H, Ben H, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921. https://doi.org/10.1094/PHYTO-100-9-0913
Meller Harel Y, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, Graber ER (2012) Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357:245–257. https://doi.org/10.1007/s11104-012-1129-3
Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989. https://doi.org/10.2134/jeq2011.0069
De Tender CA, Debode J, Vandecasteele B, D’Hose T, Cremelie P, Haegeman A, Ruttink T, Dawyndt P, Maes M (2016) Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl Soil Ecol 107:1–12. https://doi.org/10.1016/J.APSOIL.2016.05.001
Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and fusarium crown and root rot of asparagus in replant soils. Plant Dis 95:960–966. https://doi.org/10.1094/PDIS-10-10-0741
Jaiswal AK, Frenkel O, Elad Y, Lew B, Graber ER (2015) Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: the “Shifted Rmax-Effect”. Plant Soil 395:125–140. https://doi.org/10.1007/s11104-014-2331-2
George C, Kohler J, Rillig MC (2016) Biochars reduce infection rates of the root-lesion nematode Pratylenchus penetrans and associated biomass loss in carrot. Soil Biol Biochem 95:11–18. https://doi.org/10.1016/J.SOILBIO.2015.12.003
Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/J.SOILBIO.2011.04.022
Graber ER, Frenkel O, Jaiswal AK, Elad Y (2014) How may biochar influence severity of diseases caused by soilborne pathogens? Carbon Manag. 5:169–183. https://doi.org/10.1080/17583004.2014.913360