Recent progress on thermal conductive and electrical insulating polymer composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen, 2016, Thermal conductivity of polymer-based composites: fundamentals and applications, Prog. Polym. Sci., 59, 41, 10.1016/j.progpolymsci.2016.03.001
Lin, 2014, Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation, Compos. Sci. Technol., 90, 123, 10.1016/j.compscitech.2013.10.018
Han, 2011, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Prog. Polym. Sci., 36, 914, 10.1016/j.progpolymsci.2010.11.004
Hu, 2016, A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity, Compos. Sci. Technol., 36, 10.1016/j.compscitech.2016.01.010
Yao, 2015, The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites, Compos. Part A Appl. Sci. Manuf., 69, 49, 10.1016/j.compositesa.2014.10.027
Jiang, 2014, Preparation of high performance AlN/Hydantion composite by gelcasting and infiltration processes, Ceram. Int., 40, 2535, 10.1016/j.ceramint.2013.07.131
Fang, 2016, “White graphene” – hexagonal boron nitride based polymeric composites and their application in thermal management, Compos. Commun., 2, 19, 10.1016/j.coco.2016.10.002
Kim, 2017, Pyrolysis behavior of polysilazane and polysilazane-coated-boron nitride for high thermal conductive composite, Compos. Sci. Technol., 141, 1, 10.1016/j.compscitech.2017.01.003
Yang, 2017, Largely enhanced thermal conductivity of poly (ethylene glycol)/ boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets, Chem. Eng. J., 315, 481, 10.1016/j.cej.2017.01.045
Colonna, 2016, Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites, Polymer, 102, 292, 10.1016/j.polymer.2016.09.032
Che, 2017, Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy, Compos. Part A Appl. Sci. Manuf., 99, 32, 10.1016/j.compositesa.2017.04.001
Wu, 2017, Design and Preparation of a Unique Segregated Double Network with Excellent Thermal Conductive Property, ACS Appl. Mater. Interfaces., 9, 7637, 10.1021/acsami.6b16586
Shtein, 2015, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects, Chem. Mater., 27, 10.1021/cm504550e
Huang, 2002, Carbon black filled conducting polymers and polymer blends, Adv. Polym. Technol., 21, 299, 10.1002/adv.10025
Zhang, 2014, Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties, J. Phys. Chem. C., 118, 21148, 10.1021/jp5051639
Hansen, 2010, Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity, Polym. Eng. Sci., 12, 204, 10.1002/pen.760120308
Choy, 1978, Thermal conductivity of highly oriented polyethylene, Polym, 19, 155, 10.1016/0032-3861(78)90032-0
Mergenthaler, 1992, Thermal conductivity in ultraoriented polyethylene, Macromolecules., 25, 3500, 10.1021/ma00039a030
Shen, 2017, Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires, Sci. Rep., 7, 2606, 10.1038/s41598-017-02929-0
Yao, 2016, Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity, ACS Appl. Mater. Interfaces, 8, 31248, 10.1021/acsami.6b10935
Kim, 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87, 215502, 10.1103/PhysRevLett.87.215502
Gu, 2017, Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers, Compos. Part A Appl. Sci. Manuf., 95, 267, 10.1016/j.compositesa.2017.01.019
Choi, 2013, Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers, Compos. Part B Eng., 51, 140, 10.1016/j.compositesb.2013.03.002
Hong, 2012, High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers, Thermochim. Acta., 537, 70, 10.1016/j.tca.2012.03.002
Kim, 2016, Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement, Compos. Sci. Technol., 123, 99, 10.1016/j.compscitech.2015.12.004
Wang, 2016, Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity, Sci. Rep., 6, 19394, 10.1038/srep19394
Lee, 2006, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Compos. Part A Appl. Sci. Manuf., 37, 727, 10.1016/j.compositesa.2005.07.006
Chen, 2016, Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites, Compos. Sci. Technol., 128, 207, 10.1016/j.compscitech.2016.04.005
Yuan, 2013, Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites, Compos. Part A Appl. Sci. Manuf., 53, 137, 10.1016/j.compositesa.2013.05.012
Gu, 2016, Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity, Int. J. Heat. Mass Transf., 92, 15, 10.1016/j.ijheatmasstransfer.2015.08.081
Gu, 2017, Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities, Compos. Sci. Technol., 139, 83, 10.1016/j.compscitech.2016.12.015
Wang, 2017, Effect of different sizes of graphene on thermal transport performance of graphene paper, Compos. Commun., 5, 46, 10.1016/j.coco.2017.07.001
Peters, 2008, Unique Thermal Conductivity Behavior of Single-Walled Carbon Nanotube−Polystyrene Composites, Macromolecules., 41, 7274, 10.1021/ma8011569
Heo, 2012, The influence of Al(OH)-coated graphene oxide on improved thermal conductivity and maintained electrical resistivity of AlO/epoxy composites, J. Nanopart. Res., 14, 1
Qian, 2013, Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity, RSC Adv., 3, 17373, 10.1039/c3ra42104j
Zeng, 2015, Mechanical reinforcement while remaining electrical insulation of glass fibre/polymer composites using core–shell CNT@SiO2 hybrids as fillers, Compos. Part A Appl. Sci. Manuf., 73, 260, 10.1016/j.compositesa.2015.03.015
Choi, 2013, Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites, Carbon, 60, 254, 10.1016/j.carbon.2013.04.034
Cui, 2011, Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes, Carbon, 49, 495, 10.1016/j.carbon.2010.09.047
Dai, 2015, Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers, Compos. Part A Appl. Sci. Manuf., 76, 73, 10.1016/j.compositesa.2015.05.017
Yan, 2014, Polyimide nanocomposites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation, J. Mater. Chem. A, 2, 20958, 10.1039/C4TA04663C
Noma, 2014, Amorphous silica-coated graphite particles for thermally conductive and electrically insulating resins, Carbon., 78, 204, 10.1016/j.carbon.2014.06.073
Zhao, 2014, Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multiwalled carbon nanotube composites, Compos. Part A, 58, 1, 10.1016/j.compositesa.2013.11.008
Deng, 2014, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Prog. Polym. Sci., 39, 627, 10.1016/j.progpolymsci.2013.07.007
Deng, 2017, Recent Progress on the Confinement, Assembly, and Relaxation of Inorganic Functional Fillers in Polymer Matrix during Processing, Macromol. Rapid Commun., 1700444, 10.1002/marc.201700444
Kim, 2015, High thermal conductivity in amorphous polymer blends by engineered interchain interactions, Nat. Mater., 14, 295, 10.1038/nmat4141
Mu, 2017, Expedited Phonon Transfer in Interfacially Constrained Polymer Chain along Self-organized Amino Acid Crystals, ACS Appl. Mater. Interfaces, 9, 12138, 10.1021/acsami.7b02257
Mu, 2016, Paving the thermal highway with self-organized nanocrystals in transparent polymer composites, ACS Appl. Mater. Interfaces, 8, 29080, 10.1021/acsami.6b10451
Xie, 2013, High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers, Compos. Sci. Technol., 85, 98, 10.1016/j.compscitech.2013.06.010
Cho, 2016, Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets, Compos. Sci. Technol., 129, 205, 10.1016/j.compscitech.2016.04.033
Ding, 2015, Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions, Compos. Sci. Technol., 109, 25, 10.1016/j.compscitech.2015.01.015
Zhu, 2014, Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets, ACS Nano., 28, 3606, 10.1021/nn500134m
X. Huang, J. Chen, Y. Zhu, P. Jiang, Ultrahigh thermal conductivity enhancement in polymer insulating materials by constructing 3D BN nanosheet networks. International Conference on Electrical Materials and Power Equipment, 2017.
Sakhavand, 2015, Dimensional crossover of thermal transport in hybrid boron nitride nanostructures, ACS Appl. Mater. Interfaces, 7, 18312, 10.1021/acsami.5b03967
Chen, 2016, Cellulose nanofiber supported 3D interconnected BN NAnosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability, Adv. Funct. Mater., 27, 1604754, 10.1002/adfm.201604754
Zeng, 2017, A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity, ACS Nano., 11, 5167, 10.1021/acsnano.7b02359
Hu, 2017, A polymer composite with improved thermal conductivity by constructing hierarchically ordered three-dimensional interconnected network of BN, ACS Appl. Mater. Interfaces, 9, 10.1021/acsami.7b02410
Zeng, 2015, Ice‐templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement, Small, 11, 6205, 10.1002/smll.201502173
Kim, 2016, Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration, Compos. Sci. Technol., 134, 209, 10.1016/j.compscitech.2016.08.024
Jiang, 2017, BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities, Compos. Sci. Technol., 144, 63, 10.1016/j.compscitech.2017.03.023
Fang, 2017, Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application, Compos. Part A Appl. Sci. Manuf., 100, 10.1016/j.compositesa.2017.04.018
Huang, 2016, Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend, Compos. Sci. Technol., 129, 160, 10.1016/j.compscitech.2016.04.029
Zhou, 2016, Toward multi-functional polymer composites through selectively distributing functional fillers, Compos. Part A Appl. Sci. Manuf., 82, 20, 10.1016/j.compositesa.2015.11.030
Morishita, 2011, A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation, J. Mater. Chem., 21, 5610, 10.1039/c0jm04007j
Morishita, 2017, Design and fabrication of morphologically controlled carbon nanotube/polyamide-6-based composites as electrically insulating materials having enhanced thermal conductivity and elastic modulus, Compos. Sci. Technol., 142, 41, 10.1016/j.compscitech.2017.01.022
Kim, 2016, BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating, Polym, 101, 168, 10.1016/j.polymer.2016.08.062
Cao, 2013, High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers, Compos. Sci. Technol., 89, 142, 10.1016/j.compscitech.2013.09.024
Zhang, 2017, High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites, Compos. Sci. Technol., 144, 10.1016/j.compscitech.2017.02.022
Gu, 2017, Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in -situ polymerization-electrospinning-hot press method, Compos. Part A Appl. Sci. Manuf., 94, 209, 10.1016/j.compositesa.2016.12.014
Zhu, 2015, Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles, Compos. Part B Eng., 69, 496, 10.1016/j.compositesb.2014.10.035
Zhao, 2016, Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene, Nanoscale., 8, 19983, 10.1039/C6NR06622D
Wang, 2017, Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene-microsphere and boron nitride nanosheet, ACS Appl. Mater. Interfaces