Recent progress on thermal conductive and electrical insulating polymer composites

Composites Communications - Tập 8 - Trang 74-82 - 2018
Li Zhang1, Hua Deng1, Qiang Fu1
1College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, 2016, Thermal conductivity of polymer-based composites: fundamentals and applications, Prog. Polym. Sci., 59, 41, 10.1016/j.progpolymsci.2016.03.001

Lin, 2014, Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation, Compos. Sci. Technol., 90, 123, 10.1016/j.compscitech.2013.10.018

Han, 2011, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Prog. Polym. Sci., 36, 914, 10.1016/j.progpolymsci.2010.11.004

Hu, 2016, A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity, Compos. Sci. Technol., 36, 10.1016/j.compscitech.2016.01.010

Yao, 2015, The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites, Compos. Part A Appl. Sci. Manuf., 69, 49, 10.1016/j.compositesa.2014.10.027

Jiang, 2014, Preparation of high performance AlN/Hydantion composite by gelcasting and infiltration processes, Ceram. Int., 40, 2535, 10.1016/j.ceramint.2013.07.131

Fang, 2016, “White graphene” – hexagonal boron nitride based polymeric composites and their application in thermal management, Compos. Commun., 2, 19, 10.1016/j.coco.2016.10.002

Kim, 2017, Pyrolysis behavior of polysilazane and polysilazane-coated-boron nitride for high thermal conductive composite, Compos. Sci. Technol., 141, 1, 10.1016/j.compscitech.2017.01.003

Yang, 2017, Largely enhanced thermal conductivity of poly (ethylene glycol)/ boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets, Chem. Eng. J., 315, 481, 10.1016/j.cej.2017.01.045

Colonna, 2016, Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites, Polymer, 102, 292, 10.1016/j.polymer.2016.09.032

Che, 2017, Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy, Compos. Part A Appl. Sci. Manuf., 99, 32, 10.1016/j.compositesa.2017.04.001

Wu, 2017, Design and Preparation of a Unique Segregated Double Network with Excellent Thermal Conductive Property, ACS Appl. Mater. Interfaces., 9, 7637, 10.1021/acsami.6b16586

Shtein, 2015, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects, Chem. Mater., 27, 10.1021/cm504550e

Huang, 2002, Carbon black filled conducting polymers and polymer blends, Adv. Polym. Technol., 21, 299, 10.1002/adv.10025

Zhang, 2014, Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties, J. Phys. Chem. C., 118, 21148, 10.1021/jp5051639

Hansen, 2010, Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity, Polym. Eng. Sci., 12, 204, 10.1002/pen.760120308

Choy, 1978, Thermal conductivity of highly oriented polyethylene, Polym, 19, 155, 10.1016/0032-3861(78)90032-0

Mergenthaler, 1992, Thermal conductivity in ultraoriented polyethylene, Macromolecules., 25, 3500, 10.1021/ma00039a030

Shen, 2017, Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires, Sci. Rep., 7, 2606, 10.1038/s41598-017-02929-0

Yao, 2016, Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity, ACS Appl. Mater. Interfaces, 8, 31248, 10.1021/acsami.6b10935

Kim, 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87, 215502, 10.1103/PhysRevLett.87.215502

Gu, 2017, Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers, Compos. Part A Appl. Sci. Manuf., 95, 267, 10.1016/j.compositesa.2017.01.019

Choi, 2013, Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers, Compos. Part B Eng., 51, 140, 10.1016/j.compositesb.2013.03.002

Hong, 2012, High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers, Thermochim. Acta., 537, 70, 10.1016/j.tca.2012.03.002

Kim, 2016, Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement, Compos. Sci. Technol., 123, 99, 10.1016/j.compscitech.2015.12.004

Wang, 2016, Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity, Sci. Rep., 6, 19394, 10.1038/srep19394

Lee, 2006, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Compos. Part A Appl. Sci. Manuf., 37, 727, 10.1016/j.compositesa.2005.07.006

Chen, 2016, Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites, Compos. Sci. Technol., 128, 207, 10.1016/j.compscitech.2016.04.005

Yuan, 2013, Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites, Compos. Part A Appl. Sci. Manuf., 53, 137, 10.1016/j.compositesa.2013.05.012

Gu, 2016, Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity, Int. J. Heat. Mass Transf., 92, 15, 10.1016/j.ijheatmasstransfer.2015.08.081

Gu, 2017, Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities, Compos. Sci. Technol., 139, 83, 10.1016/j.compscitech.2016.12.015

Wang, 2017, Effect of different sizes of graphene on thermal transport performance of graphene paper, Compos. Commun., 5, 46, 10.1016/j.coco.2017.07.001

Peters, 2008, Unique Thermal Conductivity Behavior of Single-Walled Carbon Nanotube−Polystyrene Composites, Macromolecules., 41, 7274, 10.1021/ma8011569

Heo, 2012, The influence of Al(OH)-coated graphene oxide on improved thermal conductivity and maintained electrical resistivity of AlO/epoxy composites, J. Nanopart. Res., 14, 1

Qian, 2013, Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity, RSC Adv., 3, 17373, 10.1039/c3ra42104j

Zeng, 2015, Mechanical reinforcement while remaining electrical insulation of glass fibre/polymer composites using core–shell CNT@SiO2 hybrids as fillers, Compos. Part A Appl. Sci. Manuf., 73, 260, 10.1016/j.compositesa.2015.03.015

Choi, 2013, Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites, Carbon, 60, 254, 10.1016/j.carbon.2013.04.034

Cui, 2011, Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes, Carbon, 49, 495, 10.1016/j.carbon.2010.09.047

Dai, 2015, Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers, Compos. Part A Appl. Sci. Manuf., 76, 73, 10.1016/j.compositesa.2015.05.017

Yan, 2014, Polyimide nanocomposites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation, J. Mater. Chem. A, 2, 20958, 10.1039/C4TA04663C

Noma, 2014, Amorphous silica-coated graphite particles for thermally conductive and electrically insulating resins, Carbon., 78, 204, 10.1016/j.carbon.2014.06.073

Zhao, 2014, Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multiwalled carbon nanotube composites, Compos. Part A, 58, 1, 10.1016/j.compositesa.2013.11.008

Deng, 2014, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Prog. Polym. Sci., 39, 627, 10.1016/j.progpolymsci.2013.07.007

Deng, 2017, Recent Progress on the Confinement, Assembly, and Relaxation of Inorganic Functional Fillers in Polymer Matrix during Processing, Macromol. Rapid Commun., 1700444, 10.1002/marc.201700444

Kim, 2015, High thermal conductivity in amorphous polymer blends by engineered interchain interactions, Nat. Mater., 14, 295, 10.1038/nmat4141

Mu, 2017, Expedited Phonon Transfer in Interfacially Constrained Polymer Chain along Self-organized Amino Acid Crystals, ACS Appl. Mater. Interfaces, 9, 12138, 10.1021/acsami.7b02257

Mu, 2016, Paving the thermal highway with self-organized nanocrystals in transparent polymer composites, ACS Appl. Mater. Interfaces, 8, 29080, 10.1021/acsami.6b10451

Xie, 2013, High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers, Compos. Sci. Technol., 85, 98, 10.1016/j.compscitech.2013.06.010

Cho, 2016, Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets, Compos. Sci. Technol., 129, 205, 10.1016/j.compscitech.2016.04.033

Ding, 2015, Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions, Compos. Sci. Technol., 109, 25, 10.1016/j.compscitech.2015.01.015

Zhu, 2014, Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets, ACS Nano., 28, 3606, 10.1021/nn500134m

X. Huang, J. Chen, Y. Zhu, P. Jiang, Ultrahigh thermal conductivity enhancement in polymer insulating materials by constructing 3D BN nanosheet networks. International Conference on Electrical Materials and Power Equipment, 2017.

Sakhavand, 2015, Dimensional crossover of thermal transport in hybrid boron nitride nanostructures, ACS Appl. Mater. Interfaces, 7, 18312, 10.1021/acsami.5b03967

Chen, 2016, Cellulose nanofiber supported 3D interconnected BN NAnosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability, Adv. Funct. Mater., 27, 1604754, 10.1002/adfm.201604754

Zeng, 2017, A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity, ACS Nano., 11, 5167, 10.1021/acsnano.7b02359

Hu, 2017, A polymer composite with improved thermal conductivity by constructing hierarchically ordered three-dimensional interconnected network of BN, ACS Appl. Mater. Interfaces, 9, 10.1021/acsami.7b02410

Zeng, 2015, Ice‐templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement, Small, 11, 6205, 10.1002/smll.201502173

Kim, 2016, Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration, Compos. Sci. Technol., 134, 209, 10.1016/j.compscitech.2016.08.024

Jiang, 2017, BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities, Compos. Sci. Technol., 144, 63, 10.1016/j.compscitech.2017.03.023

Fang, 2017, Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application, Compos. Part A Appl. Sci. Manuf., 100, 10.1016/j.compositesa.2017.04.018

Huang, 2016, Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend, Compos. Sci. Technol., 129, 160, 10.1016/j.compscitech.2016.04.029

Zhou, 2016, Toward multi-functional polymer composites through selectively distributing functional fillers, Compos. Part A Appl. Sci. Manuf., 82, 20, 10.1016/j.compositesa.2015.11.030

Morishita, 2011, A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation, J. Mater. Chem., 21, 5610, 10.1039/c0jm04007j

Morishita, 2017, Design and fabrication of morphologically controlled carbon nanotube/polyamide-6-based composites as electrically insulating materials having enhanced thermal conductivity and elastic modulus, Compos. Sci. Technol., 142, 41, 10.1016/j.compscitech.2017.01.022

Kim, 2016, BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating, Polym, 101, 168, 10.1016/j.polymer.2016.08.062

Cao, 2013, High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers, Compos. Sci. Technol., 89, 142, 10.1016/j.compscitech.2013.09.024

Zhang, 2017, High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites, Compos. Sci. Technol., 144, 10.1016/j.compscitech.2017.02.022

Gu, 2017, Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in -situ polymerization-electrospinning-hot press method, Compos. Part A Appl. Sci. Manuf., 94, 209, 10.1016/j.compositesa.2016.12.014

Zhu, 2015, Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles, Compos. Part B Eng., 69, 496, 10.1016/j.compositesb.2014.10.035

Zhao, 2016, Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene, Nanoscale., 8, 19983, 10.1039/C6NR06622D

Wang, 2017, Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene-microsphere and boron nitride nanosheet, ACS Appl. Mater. Interfaces