Recent progress on tandem structured dye-sensitized solar cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal titanium dioxide films. Nature, 1991, 353(6346): 737–740
Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2): 145–153
Thomas W H, Rebecca A J, Alex B F M, Hal Van R, Joseph T H. Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science, 2008, 1(1): 66–78
Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dyesensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
Odobel F, Le Pleux L, Pellegrin Y, Blart E. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Accounts of Chemical Research, 2010, 43(8): 1063–1071
Shi J F, Xu G, Miao L, Xu X. p-type and pn-type dye-sensitized solar cells. Acta Physico-Chimica Sinica, 2011, 27(6): 1287–1299 (in Chinese)
Odobel F, Pellegrin Y, Gibson E A, Hagfeldt A, Smeigh A L, Hammarström L. Recent advances and future directions to optimize the performance of p-type dye-sensitized solar cells. Coordination Chemistry Reviews, 2012, 256(21–22): 2413–2423
Yella A, Lee HW, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrinsensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634
Wataru K, Ayumi S, Takayuki K, Yuji W, Shozo Y. Dye-sensitized solar cells: improvement of spectral response by tandem structure. Journal of Photochemistry and Photobiology A, Chemistry, 2004, 164(1–3): 33–39
Dürr M, Bamedi A, Yasuda A, Nelles G. Tandem dye-sensitized solar cell for improved power conversion efficiencies. Applied Physics Letters, 2004, 84(17): 3397–3399
Takeshi Y, Yuki U, Shinya A, Hironori A. Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 733–736
Fan S Q, Fang B Z, Choi H B, Paik S, Kim C, Jeong B S, Kim J J, Ko J. Efficiency improvement of dye-sensitized tandem solar cell by increasing the photovoltage of the back sub-cell. Electrochimica Acta, 2010, 55(15): 4642–4646
Masatoshi Y, Nobuko O K, Mitsuhiko K, Kazuhiro S, Hideki S. Optimization of tandem-structured dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2010, 94(2): 297–302
Lee K, Park S W, Ko M J, Kim K, Park N G. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nature Materials, 2009, 8(8): 665–671
Miao Q, Wu L, Cui J, Huang M, Ma T. A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(24): 2764–2768
Huang F Z, Chen D H, Cao L, Caruso R A, Cheng Y B. Flexible dye-sensitized solar cells containing multiple dyes in discrete layers. Energy & Environmental Science, 2011, 4(8): 2803–2806
Murayama M, Mori T. Dye-sensitized solar cell using novel tandem cell structure. Journal of Physics D, Applied Physics, 2007, 40(6): 1664–1668
Murayama M, Mori T. Novel tandem cell structure of dye-sensitized solar cell for improvement in photocurrent. Thin Solid Films, 2008, 516(9): 2716–2722
Kenshiro U, Shyam S P, Shuzi H. Tandem dye-sensitized solar cells consisting of floating electrode in one cell. Journal of Photochemistry and Photobiology A, Chemistry, 2010, 216(2–3): 104–109
He J, Lindström H, Hagfeldt A, Lindquist S. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. Journal of Physical Chemistry B, 1999, 103(42): 8940–8943
Powar S, Wu Q, Weidelener M, Nattesta A, Hu Z, Mishra A, Bauerle P, Spiccia L, Cheng Y B, Bach U. Improved photocurrents for ptype dye-sensitized solar cells using nano-structured nickel(II) oxide microballs. Energy & Environmental Science, 2012, doi: 10.1039/C2EE22127F
He J, Lindström H, Hagfeldt A, Lindquist S E. Dye-sensitized nanostructured tandem cell first demonstrated cell with a dyesensitized photocathode. Solar Energy Materials and Solar Cells, 2000, 62(3): 265–273
Nakasa A, Usami H, Sumikura S, Hasegawa S, Koyama T, Suzuki E. A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode. Chemistry Letters, 2005, 34(4): 500–501
Nattestad A, Ferguson M, Kerr R, Cheng Y B, Bach U. Dyesensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology, 2008, 19(29): 295304
Mizoguchi Y, Fujihara S. Fabrication and dye-sensitized solar cell performance of nanostructured NiO/Coumarin 343 photocathodes. Electrochemical and Solid-State Letters, 2008, 11(8): K78–K80
Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L C. Design of an organic chromophore for p-type dye-sensitized solar cells. Journal of the American Chemical Society, 2008, 130(27): 8570–8571
Mori S, Fukuda S, Sumikura S, Takeda Y, Tamaki Y, Suzuki E, Abe T. Charge-transfer processes in dye-sensitized NiO solar cells. Journal of Physical Chemistry C, 2008, 112(41): 16134–16139
Lepleux L, Chavillon B, Pellegrin Y, Blart E, Cario L, Jobic S, Odobel F. Simple and reproducible procedure to prepare selfnanostructured NiO films for the fabrication of p-type dye-sensitized solar cells. Inorganic Chemistry, 2009, 48(17): 8245–8250
Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun L C. High incident photon-to-current conversion efficiency of p-type dye-sen sitized solar cells based on NiO and organic chromophores. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(29): 2993–2996
Gibson E A, Smeigh A L, Le Pleux L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarström L. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angewandte Chemie International Edition, 2009, 48(24): 4402–4405
Li L, Gibson E A, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L C. Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(15): 1759–1762
Qin P, Wiberg J, Gibson E A, Linder M, Li L, Brinck T, Hagfeldt A, Albinsson B, Sun L C. Synthesis and mechanistic studies of organic chromophores with different energy levels for p-type dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(10): 4738–4748
Nattestad A, Mozer A J, Fischer M K R, Cheng Y B, Mishra A, Bäuerle P, Bach U. Highly efficient photocathodes for dyesensitized tandem solar cells. Nature Materials, 2010, 9(1): 31–35
Zhang X L, Huang F, Nattestad A, Wang K, Fu D, Mishra A, Bäuerle P, Bach U, Cheng Y B. Enhanced open-circuit voltage of ptype DSC with highly crystalline NiO nanoparticles. Chemical Communications, 2011, 47(16): 4808–4810
Zhang X L, Zhang Z, Huang F, Bäuerle P, Bach U, Cheng Y B. Charge transport in photocathodes based on the sensitization of NiO Nanorods. Journal of Materials Chemistry, 2012, 22(14): 7005–7009
Ji Z Q, Natu G, Huang Z J, Wu Y Y. Linker effect in organic donoracceptor dyes for p-type NiO dye sensitized solar cells. Energy &Environmental Science, 2011, 4(8): 2818–2821
Ji Z Q, Natu G, Huang Z J, Kokhan O, Zhang X Y, Wu Y Y. Synthesis, photophysics and photovoltaic studies of ruthenium cyclometalated complexes as sensitizers for p-type NiO dyesensitized solar cells. Journal of Physical Chemistry C, 2012, 116(32): 16854–16863
Pellegrin Y, Pleux L, Blart E, Renaud A, Chavillon B, Szuwarski N, Boujtita M, Cario L, Jobic S, Jacquemin D, Odobel F. Ruthenium polypyridine complexes as sensitizers in NiO based p-type dyesensitized solar cells: effects of the anchoring groups. Journal of Photochemistry and Photobiology A, Chemistry, 2011, 219(2–3): 235–242
Gibson E A, Smeigh A L, Le Pleux L, Hammarström L, Odobel F, Boschloo G, Hagfeldt A. Cobalt polypyridyl-based electrolytes for p-type dye-sensitized solar cells. Journal of Physical Chemistry C, 2011, 115(19): 9772–9779
Nattestad A, Zhang X, Bach U, Cheng Y B. Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. Journal of Photonics for Energy, 2011, 1(1): 011103
Yu M Z, Natu G, Ji Z Q, Wu Y Y. p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. Journal of Physical Chemistry Letters, 2012, 3(9): 1074–1078
Renaud A, Chavillon B, Le Pleux L, Pellegrin Y, Blart E, Boujtita M, Pauporté T, Cario L, Jobic S, Odobel F. CuGaO2 a promising alternative for NiO in p-type dye solar cells. Journal of Materials Chemistry, 2012, 22(29): 14353–14356
Nakabayashi S, Ohta N, Fujishima A. Dye sensitization of synthetic p-type diamond electrode. Physical Chemistry Chemical Physics, 1999, 1(17): 3993–3997
Sumikura S, Mori S, Shimizu S, Usami H, Suzuki E. Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. Journal of Photochemistry and Photobiology A, Chemistry, 2008, 194(2–3): 143–147
Chitambar M, Wang Z, Liu Y, Rockett A, Maldonado S. Dyesensitized photocathodes: efficient light-stimulated hole injection into p-GaP under depletion conditions. Journal of the American Chemical Society, 2012, 134(25): 10670–10681
Vera F, Schrebler R, Munoz E, Suarez C, Cury P, Gomez H, Cordova R, Marotti R E, Dalchiele E A. Preparation and characterization of eosin B- and erythrosin J-sensitized nanostructured NiO thin film photocathodes. Thin Solid Films, 2005, 490(2): 182–188
Xi Y Y, Li D, Djurišić A B, Xie M H, Man K Y K, Chan W K. Hydrothermal synthesis vs electrodeposition for high specific capacitance nanostructured NiO films. Electrochemical and Solid- State Letters, 2008, 11(6): D56–D59
Zhu H, Hagfeldt A, Boschloo G. Photoelectrochemistry of mesoporous NiO electrodes in iodide/triiodide electrolytes. Journal of Physical Chemistry C, 2007, 111(47): 17455–17458
Uehara S, Sumikura S, Suzuki E, Mori S. Retardation of electron injection at NiO/dye/electrolyte interface by aluminium alkoxide treatment. Energy & Environmental Science, 2010, 3(5): 641–644
Bian Z, Tachikawa T, Cui S C, Fujitsuka M, Majima T. Singlemolecule charge transfer dynamics in dye-sensitized p-type NiO solar cells: influences of insulating Al2O3 Layers. Chemical Science, 2012, 3(2): 370–379
Nagarajan R, Draeseke A D, Sleight A W, Tate J. p-type conductivity in CuCr1 − x MgxO2 films and powders. Journal of Applied Physics, 2001, 89(12): 8022–8025
Gillen R, Robertson J. Band structure calculations of CuAlO2, CuGaO2, CuInO2 and CuCrO2 by screened exchange. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(3): 035125
Morandeira A, Boschloo G, Hagfeldt A, Hammarström L. Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films. Journal of Physical Chemistry B, 2005, 109(41): 19403–19410
Rehm J, McLendon G, Nagasawa Y, Yoshihara K, Moser J, Grätzel M. Femtosecond electron-transfer dynamics at a sensitizing dyesemiconductor (TiO2) interface. Journal of Physical Chemistry, 1996, 100(23): 9577–9578
Borgström M, Blart E, Boschloo G, Mukhtar E, Hagfeldt A, Hammarström L, Odobel F. Sensitized hole injection of phosphorus porphyrin into NiO: toward new photovoltaic devices. Journal of Physical Chemistry B, 2005, 109(48): 22928–22934
Sánchez-de-Armas R, San Miguel M Á, Oviedo J, Sanz J F. Coumarin derivatives for dye sensitized solar cells: a TD-DFT study. Physical Chemistry Chemical Physics, 2012, 14(1): 225–233
Morandeira A, Fortage J, Edvinsson T, Le Pleux L, Blart E, Boschloo G, Hagfeldt A, Hammarström L, Odobel F. Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. Journal of Physical Chemistry C, 2008, 112(5): 1721–1728
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov V N, Hein B, von Middendorff C, Schönle A, Hell S W. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature, 2009, 457(7233): 1159–1162
Wu X, Xing G, Tan S L, Webster R D, Sum T C, Yeow E K. Hole transfer dynamics from dye molecules to p-type NiO nanoparticles: effects of processing conditions. Physical Chemistry Chemical Physics, 2012, 14(26): 9511–9519
Morandeira A, Boschloo G, Hagfeldt A, Hammarström L. Coumarin 343-NiO films as nanostructured photocathodes in dyesensitized solar cells: ultrafast electron transfer, effect of the I-3 /I-Redox couple and mechanism of photocurrent generation. Journal of Physical Chemistry C, 2008, 112(25): 9530–9537
Bremner S P, Levy M Y, Honsberg C B. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 225–233
Liska P, Thampi K R, Grätzel M, Brémaud D, Rudmann D, Upadhyaya H M, Tiwari A N. Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency. Applied Physics Letters, 2006, 88(20): 203103
Wang W L, Lin H, Zhang J, Li X, Yamada A, Konagai M, Li J B. Experimental and simulation analysis of the dye sensitized solar cell/Cu(In,Ga)Se2 solar cell tandem structure. Solar Energy Materials and Solar Cells, 2010, 94(10): 1753–1758
Jeong W S, Lee J W, Jung S, Yun J H, Park N G. Evaluation of external quantum efficiency of a 12.35% tandem solar cell comprising dye-sensitized and CIGS solar cells. Solar Energy Materials and Solar Cells, 2011, 95(12): 3419–3423
Ito S, Dharmadasa I M, Tolan G J, Roberts J S, Hill G, Miura H, Yum J H, Pechy P, Liska P, Comte P, Grätzel M. High-voltage (1.8 V) tandem solar cell system using a GaAs/AlxGa(1 − x ) As graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra. Solar Energy, 2011, 85(6): 1220–1225
Greg DcB, Paul G H, Seung-Hyun A L, Neal M A, Janine M, Thomas E M, Paul L, Shaik M Z, Michael G, Anita H B, Martin A G. Utilization of direct and diffuse sunlight in a dye-sensitized solar cell-silicon photovoltaic hybrid concentrator system. Journal of Physical Chemistry Letters, 2011, 2(6): 581–585
Ingmar B, Martin K, Felix E, Jaehyung H, Peter E, Anders H, Jürgen W, Neil P. Efficient organic tandem cell combining a solid state dyesensitized and a vacuum deposited bulk heterojunction solar cell. Solar Energy Materials and Solar Cells, 2009, 93(10): 1896–1899
Guo X Z, Zhang Y D, Qin D, Luo Y H, Li D M, Pang Y T, Meng Q B. Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum. Journal of Power Sources, 2010, 195(22): 7684–7690
Wang N, Han L, He H C, Park N H, Koumoto K. A novel highperformance photovoltaic-thermoelectric hybrid device. Energy & Environmental Science, 2011, 4(9): 3676–3679
Jeremie B, Maurin C, Florian L, Jun-Ho Y, Michael G, Kevin S. Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. Journal of Materials Research, 2010, 25(1): 17–24